1. The passive permeability of the blood-retinal barrier (b.r.b.) to the water-soluble non-electrolytes, sucrose and mannitol, was determined using a multiple time point-graphical approach as has been used in the assessment of blood-brain barrier (b.b.b.) permeability. 2. The calculated permeability surface area product for the b.r.b. for sucrose was 0.44 (+/- 0.081 S.E. of mean) X 10(-5) ml g-1 s-1 (n = 20) and for mannitol was 1.25 (+/- 0.30) X 10(-5) ml g-1 s-1 (n = 18). These values are similar and comparable to those found for the capillaries in the brain (P greater than 0.05) and significantly different from zero (P less than 0.01). 3. Data on the concentrations of sucrose in different parts of the eye show that the permeability of the blood-retinal barrier, rather than the more permeable blood-aqueous barrier permeability, was being measured by our technique.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1192091 | PMC |
http://dx.doi.org/10.1113/jphysiol.1987.sp016667 | DOI Listing |
Invest Ophthalmol Vis Sci
January 2025
University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal.
Nat Commun
January 2025
Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials & Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou, China.
Current treatments for fundus disorders, such as intravitreal injections, pose risks, including infection and retinal detachment, and are limited in their ability to deliver macromolecular drugs across the blood‒retinal barrier. Although non-invasive methods are safer, their delivery efficiency remains suboptimal (<5%). We have developed a wearable electrodriven switch (WES) that improves the non-invasive delivery of macromolecules to the fundus.
View Article and Find Full Text PDFInt J Pharm
December 2024
Great Ormond Street Institute of Child Health, University College London, London WC1E 6BT, UK. Electronic address:
The neuronal ceroid lipofuscinoses, commonly known as Batten disease, are a group of lysosomal storage disorders affecting children. There is extensive central nervous system and retinal degeneration, resulting in seizures, vision loss and a progressive cognitive and motor decline. Enzyme replacement and gene therapies are being developed, and mRNA and oligonucleotide therapies are more recently being considered.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2024
Paris Cardiovascular Research Center, Université Paris Cité, Inserm U970, Paris F-75015, France.
The integrity of the blood-retina barrier (BRB) is crucial for phototransduction and vision, by tightly restricting transport of molecules between the blood and surrounding neuronal cells. Breakdown of the BRB leads to the development of retinal diseases. Here, we show that Netrin-1/Unc5b and Norrin/Lrp5 signaling establish a zonated endothelial cell gene expression program that controls BRB integrity.
View Article and Find Full Text PDFMetabolism
December 2024
School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea; Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 06351, Republic of Korea; Biomedical Institute for Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea; Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea. Electronic address:
Background: Diabetic retinopathy (DR), a major blindness cause in developed countries, is intricately linked to diabetes management and its duration. Here, we demonstrate that HDAC6 mediates NLRP3 inflammasome activation under diabetic conditions, leading to retinal inflammation and degeneration.
Methods: This study demonstrated the therapeutic effects of HDAC6 genetic ablation, pharmacological inhibition, and HDAC6-deficient bone marrow transplantation in a diabetes model induced by streptozotocin and a high-fat diet.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!