Introduction: Levels of mental distress in the United States are a health policy concern. The association between social capital and mental distress is well documented, but evidence comes primarily from individual-level studies. Our objective was to examine this association at the county level with advanced spatial econometric methods and to explore the importance of between-county effects.
Methods: We used County Health Rankings and Roadmaps data for 3,106 counties of the contiguous United States. We used spatial Durbin modeling to assess the direct (within a county) and indirect (between neighboring counties) effects of social capital on mental distress. We also examined the spatial spillover effects from neighboring counties based on higher-order spatial weights matrices.
Results: Counties with the highest prevalence of mental distress were found in regional clusters where levels of social capital were low, including the Black Belt, central/southern Appalachia, on the Mississippi River, and around some Indian Reservations. Most of the association between social capital and mental distress was indirect, from the neighboring counties, although significant direct effects showed the within-county association. Models also confirmed the importance of county-level socioeconomic status.
Conclusion: We found that county social capital is negatively related to mental distress. Counties are not isolated places and are often part of wider labor and housing markets, so understanding spatial dependencies is important in addressing population-level mental distress.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6583813 | PMC |
http://dx.doi.org/10.5888/pcd16.180491 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!