Exciplex systems with efficient thermally activated delayed fluorescence as the sensitizing hosts for fluorescent organic light-emitting diodes (OLEDs) have been flourished recently, while the device performances are still lagging behind. Here, a donor molecule sterically encapsulated with tert-butyl units is designed and synthesized to increase the donor-acceptor separation in an exciplex system, leading to reduced singlet-triplet energy gap (Δ Es) and improved reverse intersystem crossing (RISC) efficiency. OLEDs utilizing exciplexes with increased donor-acceptor distance ( r) as the hosts for conventional fluorescent dopants exhibit a maximum external quantum efficiency (EQE) as high as 16.5%, benefiting from the enhanced RISC process and suppressed exciton loss by the Dexter interaction. Furthermore, extremely low efficiency roll-off is obtained with EQEs of 16.2% at 5000 cd/m and 15.2% at 10 000 cd/m. The results here represent the state-of-the-art performances for devices based on exciplexes as the hosts for conventional fluorescent dopants, manifesting the superiority of exciplexes with increased r as the sensitizing hosts for fluorescent dopants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.9b05963 | DOI Listing |
Adv Healthc Mater
January 2025
Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
Myocarditis, a leading cause of sudden cardiac death and heart transplantation, poses significant treatment challenges. The study of clinical samples from myocarditis patients reveals a correlation between the pathogenesis of myocarditis and cardiomyocyte mitochondrial DNA (mtDNA). During inflammation, the concentration of mtDNA in cardiomyocytes increases.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Single Molecule Analysis Group, Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109, United States.
Single-molecule fluorescence resonance energy transfer (smFRET) has emerged as a pivotal technique for probing biomolecular dynamics over time at nanometer scales. Quantitative analyses of smFRET time traces remain challenging due to confounding factors such as low signal-to-noise ratios, photophysical effects such as bleaching and blinking, and the complexity of modeling the underlying biomolecular states and kinetics. The dynamic distance information shaping the smFRET trace powerfully uncovers even transient conformational changes in single biomolecules both at or far from equilibrium, relying on trace idealization to identify specific interconverting states.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
The development of stable and tunable polycyclic aromatic compounds (PACs) is crucial for the advancement of organic optoelectronics. Conventional PACs, such as acenes, often suffer from poor stability due to photooxidation and oligomerization, which are linked to their frontier molecular orbital energy levels. To address these limitations, we designed and synthesized a new class of π-expanded indoloindolizines by merging indole and indolizine moieties into a single polycyclic framework.
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
Department of Chemistry, National Institute of Technology, Rourkela, Odisha 769008, India.
The idea of coordinating biologically active ligand systems to metal centers to exploit their synergistic effects has gained momentum. Therefore, in this report, three Ru complexes - of morpholine-derived thiosemicarbazone ligands have been prepared and characterized by spectroscopy and HRMS along with the structure of through a single-crystal X-ray diffraction study. The solution stability of - was tested using conventional techniques such as UV-vis and HRMS.
View Article and Find Full Text PDFSurg Endosc
January 2025
Department of Hepatobiliary and Pancreatic SurgeryIII, the Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, China.
Background: Indocyanine green (ICG) fluorescence imaging technology is increasingly widely used in laparoscopic hepatectomy. However, previous studies have produced conflicting results regarding whether it is truly superior to traditional laparoscopic hepatectomy. This study investigated the clinical effect of laparoscopic hepatectomy for hepatocellular carcinoma (HCC) using ICG imaging technology.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!