Identification of Phloem Mobile mRNAs Using the Solanaceae Heterograft System.

Methods Mol Biol

Department of Agronomy and Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, USA.

Published: March 2020

Large numbers of mRNAs move in the phloem and some may function as signals to exert important physiological functions in the distal recipient organs. Generating an authentic list of phloem mobile mRNA is a prerequisite for elucidating their physiological functions. Nicotiana benthamiana can be used as a scion to graft on a tomato (Solanum lycopersicum) rootstock. Thereby, shoot-to-root mobile N. benthamiana mRNAs transported via the phloem can be identified from the root of the tomato rootstock. Due to the close relationship and similar genome sequences of the two species, stringent informatics procedures should be applied to avoid false identification. This heterograft system can be used to study physiological processes associated with mRNAs that are mobile under either normal or adverse growth condition.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4939-9562-2_32DOI Listing

Publication Analysis

Top Keywords

phloem mobile
8
heterograft system
8
physiological functions
8
identification phloem
4
mobile
4
mrnas
4
mobile mrnas
4
mrnas solanaceae
4
solanaceae heterograft
4
system large
4

Similar Publications

Shoot-Silicon-Signal protein to regulate root silicon uptake in rice.

Nat Commun

December 2024

Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan.

Plants accumulate silicon to protect them from biotic and abiotic stresses. Especially in rice (Oryza sativa), a typical Si-accumulator, tremendous Si accumulation is indispensable for healthy growth and productivity. Here, we report a shoot-expressed signaling protein, Shoot-Silicon-Signal (SSS), an exceptional homolog of the flowering hormone "florigen" differentiated in Poaceae.

View Article and Find Full Text PDF

The main phloem loader in potato, sucrose transporter StSUT1, is coexpressed with 2 members of the SWEET gene family: StSWEET11b, a clade III member of SWEET carriers assumed to be involved in sucrose efflux, and StSWEET1g, a clade I member involved in glucose efflux into the apoplast, that physically interacts with StSUT1. We investigated the functionality of SWEET carriers via uptake experiments with fluorescent glucose or sucrose analogs. Inhibition or overexpression of StSWEET1g/SlSWEET1e affected tuberization and flowering in transgenic potato plants.

View Article and Find Full Text PDF

Characterisation of low-level pyrasulfotole resistance and the role of herbicide translocation in wild radish (Raphanus raphanistrum).

Pestic Biochem Physiol

September 2024

Australian Herbicide Resistance Initiative, UWA School of Agriculture and Environment, University of Western Australia, 35 Stirling Highway, Crawley 6009, Australia.

The synthetic auxin 2,4-D and the 4-hydroxyphenylpyruvate dioxygenase inhibitor pyrasulfotole are phloem-mobile post-emergence herbicides, the latter applied in co-formulation with either bromoxynil (a contact herbicide causing leaf desiccation) or MCPA (another synthetic auxin). Previous studies have shown a wide range of 2,4-D translocation phenotypes in resistant populations of the agricultural weed Raphanus raphanistrum, but it was hypothesised that enhanced movement out of the apical meristem could contribute to resistance. Little is known about pyrasulfotole translocation or the effect of bromoxynil on pyrasulfotole movement.

View Article and Find Full Text PDF

The precise onset of flowering is crucial to ensure successful plant reproduction. The gene () encodes florigen, a mobile signal produced in leaves that initiates flowering at the shoot apical meristem. In response to seasonal changes, is induced in phloem companion cells located in distal leaf regions.

View Article and Find Full Text PDF

Unlike plants in the field, which experience significant temporal fluctuations in environmental conditions, plants in the laboratory are typically grown in controlled, stable environments. Therefore, signaling pathways evolved for survival in fluctuating environments often remain functionally latent in laboratory settings. Here, we show that TGA1 and TGA4 act as hub transcription factors through which the expression of genes involved in high-affinity nitrate uptake are regulated in response to shoot-derived phloem mobile polypeptides, CEP DOWNSTREAM 1 (CEPD1), CEPD2 and CEPD-like 2 (CEPDL2) as nitrogen (N) deficiency signals, and Glutaredoxin S1 (GrxS1) to GrxS8 as N sufficiency signals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!