Effective exploitation of visible-light unique structural and electronic properties has enormously attracted more researchers for photocatalytic systems. Here, we have fabricated an efficient BiWO-Ag plasmonic hybrid via the photoreduction technique and the obtained materials were well characterized with sophisticated instruments. The BW-Ag-1 catalyst showed the maximum photocatalytic activity for the degradation of cationic dyes rhodamine B (RhB) and malachite green (MG) and the rate constant was 2.6 × 10 min and 1.6 × 10 min respectively, which is the highest among the synthesized catalysts. The enhanced photocatalytic activity could be ascribed to the synergistic effect of surface plasmon resonance caused by Ag NPs, which could enhance the photoabsorption capability, photon scattering, and plasmon resonance energy transfer, and plasmon-induced hot electron transfer (PHET) ensures better photocatalytic performance. In addition, we have evaluated the influence of Ag on BiWO microspheres with crystallographic and morphological studies, which depict a negligible change in the crystal structure and an increase in the Ag (FCC) phase with an increase in AgNO content and the FE-SEM and mapping images disclose the uniform dispersion of Ag on the surface of BiWO. Trapping experiments revealed that the active species for the degradation of MG were superoxide (˙O) radicals as the major reactive species with holes being the main instigative species, which are effectively involved in the photo-induced catalytic reaction. Furthermore, we have studied the effect of different pH of MG initial solution and the plasmonic hybrid catalyst depicted high stability and durability even after five successive cycles. In the electrochemical study, the BW-Ag-1 modified glassy carbon electrode (GCE) demonstrated a superior current density due to the redox behavior and smaller resistance revealing the addition of Ag NPs to be beneficial for the catalytic performance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c9dt01807g | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720.
Polysaccharide monooxygenase (PMO) catalysis involves the chemically difficult hydroxylation of unactivated C-H bonds in carbohydrates. The reaction requires reducing equivalents and will utilize either oxygen or hydrogen peroxide as a cosubstrate. Two key mechanistic questions are addressed here: 1) How does the enzyme regulate the timely and tightly controlled electron delivery to the mononuclear copper active site, especially when bound substrate occludes the active site? and 2) How does this electron delivery differ when utilizing oxygen or hydrogen peroxide as a cosubstrate? Using a computational approach, potential paths of electron transfer (ET) to the active site copper ion were identified in a representative AA9 family PMO from (PMO9E).
View Article and Find Full Text PDFInorg Chem
January 2025
School of Chemistry and Chemical Engineering, and Institute for Innovative Materials and Energy, Yangzhou University, 180 Si-Wang-Ting Road, Yangzhou 225002, China.
The interaction between electrocatalytic active centers and their support is essential to the electrocatalytic performance, which could regulate the electronic structure of the metal centers but requires precise design. Herein, we report on covalent grafting of graphene quantum dots (GQDs) on stepped TiO as a support to anchoring cobalt phosphide nanoparticles (CoP/GQD/S-TiO) for electrocatalytic hydrogen evolution reaction (HER). The covalent ester bonds between GQDs and TiO endow enlarged anchoring sites to achieve highly dispersed electroactive CoP nanoparticles but, more importantly, provide an efficient electron-transfer pathway from TiO to GQDs which could regulate the electronic structure of CoP.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Chemistry and Biochemistry, Queens College, Flushing, New York 11367, United States.
Semiconductor nanomaterials and nanostructured interfaces have important technological applications, ranging from fuel production to electrosynthesis. Their photocatalytic activity is known to be highly heterogeneous, both in an ensemble of nanomaterials and within a single entity. Photoelectrochemical imaging techniques are potentially useful for high-resolution mapping of photo(electro)catalytic active sites; however, the nanoscale spatial resolution required for such experiments has not yet been attained.
View Article and Find Full Text PDFMater Horiz
January 2025
Department of Material Sciences, Institute of Pure and Applied Sciences, University of Tsukuba, 1-1-1, Tennodai, Ibaraki 305-5358, Japan.
The efficient immobilization of redox mediators remains a major challenge in the design of mediated enzyme electrode platforms. In addition to stability, the ability of the redox-active material to mediate electron transfer from the active-site buried enzymes, such as flavin adenine dinucleotide-dependent glucose dehydrogenase (FADGDH) and lactate oxidase (LOx), is also crucial. Conventional immobilization techniques can be synthetically challenging, and immobilized mediators often exhibit limited durability, particularly in continuous operation.
View Article and Find Full Text PDFACS Biomater Sci Eng
January 2025
Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China.
Development of radiosensitizers with high-energy deposition efficiency, electron transfer, and oxidative stress amplification will help to improve the efficiency of radiotherapy. To overcome the drawbacks of radiotherapy alone, it is also crucial to design a multifunctional radiosensitizer that simultaneously realizes multimodal treatment and tumor microenvironment modulation. Herein, a multifunctional radiosensitizer based on the CuBiS-BP@PEI nanoheterostructure (NHS) for multimodal cancer treatment is designed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!