Excess de novo likely gene-disruptive and missense variants within dozens of genes have been identified in autism spectrum disorder (ASD) and other neurodevelopmental disorders. However, many rare inherited missense variants of these high-risk genes have not been thoroughly evaluated. In this study, we analyzed the rare missense variant burden of POGZ in a large cohort of ASD patients from the Autism Clinical and Genetic Resources in China (ACGC) and further dissected the functional effect of disease-associated missense variants on neuronal development. Our results showed a significant burden of rare missense variants in ASD patients compared to the control population (P = 4.6 × 10, OR = 3.96), and missense variants in ASD patients showed more severe predicted functional outcomes than those in controls. Furthermore, by leveraging published large-scale sequencing data of neurodevelopmental disorders (NDDs) and sporadic case reports, we identified 8 de novo missense variants of POGZ in NDD patients. Functional analysis revealed that two inherited, but not de novo, missense variants influenced the cellular localization of POGZ and failed to rescue the defects in neurite and dendritic spine development caused by Pogz knockdown in cultured mouse primary cortical neurons. Significantly, L1CAM, an autism candidate risk gene, is differentially expressed in POGZ deficient cell lines. Reduced expression of L1cam was able to partially rescue the neurite length defects caused by Pogz knockdown. Our study showed the important roles of rare inherited missense variants of POGZ in ASD risk and neuronal development and identified the potential downstream targets of POGZ, which are important for further molecular mechanism studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jgg.2019.04.002 | DOI Listing |
Mol Genet Genomic Med
January 2025
The State Key Laboratory for Complex Severe and Rare Diseases, the State Key Sci-Tech Infrastructure for Translational Medicine, Peking Union Medical College Hospital, Beijing, China.
Background: Primary ciliary dyskinesia (PCD) is a rare autosomal recessive disorder characterized by dysfunction of motile cilia. While approximately 50 genes have been identified, around 25% of PCD patients remain genetically unexplained; elucidating the pathogenicity of specific variants remains a challenge.
Methods: Whole exome sequencing (WES) and Sanger sequencing were conducted to identify potential pathogenic variants of PCD.
Short linear peptide motifs play important roles in cell signaling. They can act as modification sites for enzymes and as recognition sites for peptide binding domains. SH2 domains bind specifically to tyrosine-phosphorylated proteins, with the affinity of the interaction depending strongly on the flanking sequence.
View Article and Find Full Text PDFFront Psychiatry
December 2024
Translational Genomic Department, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.
Background: Pathogenic variants in are associated with pyridoxine-dependent epilepsy (PDE), a rare autosomal recessive disorder characterized by epileptic seizures, unresponsiveness to standard antiseizure medications (ASM), and a response only to pyridoxine. Here, we report two patients (from a consanguineous family) with neonatal seizures and developmental delay.
Case Presentation: Patient 1 (a 13-year-old girl) was born normally at term.
Hum Genome Var
January 2025
Division of Molecular Genetics, Center for Medical Science, Fujita Health University Hospital, Toyoake, Aichi, Japan.
UBA1 is an E1 ubiquitin-activating enzyme that initiates the ubiquitylation of target proteins and is thus a key component of the ubiquitin signaling pathway. Three disorders are associated with pathogenic variants of the UBA1 gene: vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic (VEXAS) syndrome, lung cancer in never smokers (LCINS), and X-linked spinal muscular atrophy (XL-SMA, SMAX2). We here report a case of infantile respiratory distress syndrome followed by continuing neuromuscular symptoms.
View Article and Find Full Text PDFPLoS Genet
January 2025
Program in Genetics and Genome Biology, SickKids Research Institute, Toronto, Ontario, Canada.
Innovative and easy-to-implement strategies are needed to improve the pathogenicity assessment of rare germline missense variants. Somatic cancer driver mutations identified through large-scale tumor sequencing studies often impact genes that are also associated with rare Mendelian disorders. The use of cancer mutation data to aid in the interpretation of germline missense variants, regardless of whether the gene is associated with a hereditary cancer predisposition syndrome or a non-cancer-related developmental disorder, has not been systematically assessed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!