In this work, we report a convenient method of grafting non-leachable bioactive amine functions onto the surface of bacterial cellulose (BC) nanofibrils, via a simple silylation treatment in water. Two different silylation protocols, involving different solvents and post-treatments were envisaged and compared, using 3-aminopropyl-trimethoxysilane (APS) and (2-aminoethyl)-3-aminopropyl-trimethoxysilane (AEAPS) as silylating agents. In aqueous and controlled conditions, water-leaching resistant amino functions could be successfully introduced into BC, via a simple freeze-drying process. The silylated material remained highly porous, hygroscopic and displayed sufficient thermal stability to support the sterilization treatments generally required in medical applications. The impact of the silylation treatment on the intrinsic anti-bacterial properties of BC was investigated against the growth of Escherichia coli and Staphylococcus aureus. The results obtained after the in vitro studies revealed a significant growth reduction of S. aureus within the material.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2019.05.009DOI Listing

Publication Analysis

Top Keywords

bacterial cellulose
8
intrinsic anti-bacterial
8
anti-bacterial properties
8
silylation treatment
8
silylation
4
silylation bacterial
4
cellulose design
4
design membranes
4
membranes intrinsic
4
properties work
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!