Burns and chronic wounds, often related to chronic diseases (as diabetes and cancer), are challenging lesions, difficult to heal. The prompt and full reconstitution of a functional skin is at the basis of the development of biopolymer-based scaffolds, representing a 3D substrate mimicking the dermal extracellular matrix. Aim of the work was to develop scaffolds intended for skin regeneration, according to: fabrication by electrospinning from aqueous polysaccharide solutions; prompt and easy treatment to obtain scaffolds insoluble in aqueous fluids; best performance in supporting wound healing. Three formulations were tested, based on chitosan (CH) and pullulan (P), associated with glycosaminoglycans (chondroitin sulfate - CS or hyaluronic acid - HA). A multidisciplinary approach has been used: chemico-physical characterization and preclinical evaluation allowed to obtain integrated information. This supports that CS gives distinctive properties and optimal features to the scaffold structure for promoting cell proliferation leading tissue reparation towards a complete skin restore.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2019.05.069DOI Listing

Publication Analysis

Top Keywords

chitosan/glycosaminoglycan scaffolds
4
skin
4
scaffolds skin
4
skin reparation
4
reparation burns
4
burns chronic
4
chronic wounds
4
wounds chronic
4
chronic diseases
4
diseases diabetes
4

Similar Publications

Infections in nonhealing wounds remain one of the major challenges. Recently, nanomedicine approach seems a valid option to overcome the antibiotic resistance mechanisms. The aim of this study was the development of three types of polysaccharide-based scaffolds (chitosan-based (CH), chitosan/chondroitin sulfate-based (CH/CS), chitosan/hyaluronic acid-based (CH/HA)), as dermal substitutes, to be loaded with norfloxacin, intended for the treatment of infected wounds.

View Article and Find Full Text PDF

Cutaneous wounds represent a major issue in medical care, with approximately 300 million chronic and 100 million traumatic wound patients worldwide, and microbial infections slow the healing process. The aim of this work was to develop electrospun scaffolds loaded with silver nanoparticles (AgNPs) to enhance cutaneous healing, preventing wound infections. AgNPs were directly added to polymeric blends based on chitosan (CH) and pullulan (PUL) with hyaluronic acid (HA) or chondroitin sulfate (CS) to be electrospun obtaining nanofibrous scaffolds.

View Article and Find Full Text PDF

Chitosan/glycosaminoglycan scaffolds for skin reparation.

Carbohydr Polym

September 2019

Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.

Burns and chronic wounds, often related to chronic diseases (as diabetes and cancer), are challenging lesions, difficult to heal. The prompt and full reconstitution of a functional skin is at the basis of the development of biopolymer-based scaffolds, representing a 3D substrate mimicking the dermal extracellular matrix. Aim of the work was to develop scaffolds intended for skin regeneration, according to: fabrication by electrospinning from aqueous polysaccharide solutions; prompt and easy treatment to obtain scaffolds insoluble in aqueous fluids; best performance in supporting wound healing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!