Superhydrophobic cotton fabrics were prepared by simultaneous incorporation of SiO₂ aerogel particles and polydimethylsiloxane (PDMS). The SiO₂ aerogels were synthesized via acid-base catalyzed sol-gel reaction with methyl trimethoxy silane (MTMS) as the single precursor and oxalic acid and ammonium hydroxide as the catalyst in methanol (MeOH) solution by drying under ambient pressure. The preparation parameters (e.g., MTMS/MeOH molar ratio, oxalic acid/MTMS molar ratio, gelation pH value, and gelation temperature) had great influences on the density and porosity of the SiO₂ aerogel. The obtained SiO₂ aerogel had low density, high porosity and high specific surface area, showing the typical rough mesoporous structure. The prepared bulk SiO₂ aerogel displayed excellent superhydrophobicity with a water contact angle (WCA) of 151.0 ± 0.8°. Superhydrophobic cotton fabric with a WCA of 155.6 ± 0.9° for a 5 L water droplet was successfully obtained by simply coating the PDMS/SiO₂ aerogel composite solution via dip-pad-cure process. This could be attributed to the combination of SiO₂ aerogel particles with porous rough microstructure, high specific surface area and PDMS adhesive layer with low surface energy. The effect of PDMS/SiO₂ aerogel coating treatment on the mechanical strength properties of the cotton fabrics was negligible. This simple approach may pave the potential way for practical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jnn.2019.16730DOI Listing

Publication Analysis

Top Keywords

sio₂ aerogel
24
superhydrophobic cotton
12
aerogel
8
methyl trimethoxy
8
trimethoxy silane
8
single precursor
8
cotton fabric
8
cotton fabrics
8
aerogel particles
8
molar ratio
8

Similar Publications

Nanocellulose/activated carbon composite aerogel beads with high adsorption capacity for toxins in blood.

Int J Biol Macromol

January 2025

School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China; School of Materials Science and Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China. Electronic address:

Activated carbon is extensively utilized in blood purification applications. However, its performance has been significantly limited by their poor blood compatibility. In this work, 2,2,6,6-tetramethylpiperidinyl-1-oxyl (TEMPO)-oxidized cellulose nanofibers (TOCN) and activated carbon (AC) were used to form composite beads by the drop curing method to improve hemocompatibility.

View Article and Find Full Text PDF

Passive Radiant Cooling and Heating are green and sustainable methods of radiant heat management without consuming additional energy. However, the absorption of sunlight and poor insulation of materials can reduce radiative cooling and also affect radiative heating performance. Herein, we have constructed porous hierarchical dual-mode silk nanofibrous aerogel (SNF) films with high mechanical toughness and stability using silk nanofibers/GO.

View Article and Find Full Text PDF

Cellulose/covalent organic framework aerogel for efficient removal of Cr(VI): Performance and mechanism study.

Int J Biol Macromol

January 2025

Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, Yunnan, China. Electronic address:

Cellulose composites have exceptional qualities, particularly in removing heavy metal ions. Nevertheless, these materials' poor mechanical qualities and the restricted exposure of surface-active sites reduce the effectiveness of their removal. The removal efficiency of adsorbent materials largely depends on their macroscopic structural characteristics.

View Article and Find Full Text PDF

Environmental pollution, stemming from the disposal of contaminants, poses severe threats to ecosystems and human health. The emergence of a new class of pollutants, termed emerging contaminants (ECs), in soil, water, and air has raised global concerns, aligning with the UN 2030 Agenda's Sustainable Development Goals. Aerogels, three-dimensional structures with high porosity and low density, offer promise in addressing this issue.

View Article and Find Full Text PDF

The necessity to mitigate the intrinsic issues associated with tissue or organ transplants, in order to address the rising prevalence of diseases attributable to increased life expectancy, provides a rationale for the pursuit of innovation in the field of biomaterials. Specifically, biopolymeric aerogels represent a significant advancement in the field of tissue engineering, offering a promising solution for the formation of temporary porous matrices that can replace damaged tissues. However, the functional characteristics of these materials are inadequate, necessitating the implementation of matrix reinforcement methods to enhance their performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!