Si nanoparticles uniformly coated with Co-containing N-doped carbon were investigated as an anode material for Li-ion batteries. The Si nanoparticle surfaces were modified with conductive and matrix, N-doped carbon and cobalt element and prepared by a simple pyrolysis process using an ionic liquid that contained nitrogen with metal complex. After a simple annealing process, the N-doped carbon containing cobalt element was uniformly coated onto the Si nanoparticles. The smooth carbon layer connected the Si nanoparticles without any morphological changes. Si nanoparticles containing 34 wt% N-doped carbon and cobalt element exhibited a stable electrochemical performance with a capacity of ~1133 mAh g and excellent capacity retention over 60 cycles. The high electrochemical performances was attributed to the synergistic effect by presence cobalt in N-doped carbon matrix, which alleviated the lithium-silicon alloying reaction-induced volume expansion and enhanced electrical conductivity during cycling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jnn.2019.16732 | DOI Listing |
J Phys Chem Lett
December 2024
Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China.
The electrochemical reduction reaction (RR) of CO to high value multicarbon products is highly desirable for carbon utilization. Dual transition metal atoms dispersed by N-doped graphene are able to be highly efficient catalysts for this process due to the synergy of the bimetallic sites for C-C coupling. In this work, we screened homonuclear dual-atom catalysts dispersed by N-doped graphene to investigate the potential in CO reduction to C products by employing density functional theory calculations.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, P. R. China.
Proton-electron transfer (PET) processes play a pivotal role in numerous electrochemical reactions; yet, effectively harnessing them remains a formidable challenge. Consequently, unveiling the PET pathway is imperative to elucidate the factors influencing the efficiency and selectivity of small molecule electrochemical conversion. In this study, a Zn-NC model catalyst with N and C vacancies was synthesized using a hydriding method to investigate the universal impact of PET on CO electroreduction.
View Article and Find Full Text PDFLuminescence
December 2024
Department of Chemistry and Chemical Engineering, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China.
Herein, a kind of N-doped fluorescent carbon dots (N-CDs) were prepared by using melamine and carboxymethyl cellulose (CMC) as precursors through a straightforward hydrothermal method. The designed sensor displayed a uniform nanoscale distribution, excellent hydrophilicity, and strong fluorescence emission with a fluorescence quantum yield of 37.98%.
View Article and Find Full Text PDFInorg Chem
December 2024
Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India.
Design of hierarchical hollow nanoheterostructure materials through interfacial and defect engineering is an innovative approach for achieving optimal charge separation dynamics and photon harvesting efficiency. Herein, we have described a facile technique to fabricate hollow MOF-derived C, N-doped-CoO (C, N-CoO) dodecahedral particles enwrapped with MgInS nanosheets for enhanced N reduction performance. ZIF-67 was initially used as a sacrificial template to prepare hollow C, N-CoO using a carbonization route followed by low-temperature calcination treatment.
View Article and Find Full Text PDFChemphyschem
December 2024
Indian Institute of Technology Jodhpur, Chemistry, NH65, Surpura bypass road, karwar, 342037, Jodhpur, INDIA.
To improve bioavailability, enhance the solubility and stability of the hydrophobic drug curcumin, nanoparticles such as carbon quantum dots (CQDs) are unique choices. In this study, we present a simple, cost-effective, and eco-friendly method for synthesizing nitrogen-doped carbon quantum dots (N-CQDs) and their application in the efficient delivery of hydrophobic drugs curcumin into live cancer cells. The N-CQDs produced in this study exhibit excellent water solubility, remarkable stability, and high biocompatibility.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!