The aim of this study is to offer a new class of degradable shape-memory poly(ether-ester-urethane)s (SMPEEUs) based on poly(ether-ester) (PECL) and well-defined aliphatic diurethane diisocyanate (HBH) for further biomedical application. The prepolymers of PECLs were synthesized through bulk ring-opening polymerization using ε-caprolactone as the monomer and poly(ethylene glycol) as the initiator. By chain extension of PECL with HBH, SMPEEUs with varying PEG content were prepared. The chemical structures of the prepolymers and products were characterized by GPC, H NMR, and FT-IR, and the effect of PEG content on the physicochemical properties (especially the shape recovery properties) of SMPEEUs was studied. The microsphase-separated structures of the SMPEEUs were demonstrated by DSC and XRD. The SMPEEU films exhibited good tensile properties with the strain at a break of 483%-956% and an ultimate stress of 23.1-9.0 MPa. Hydrolytic degradation in vitro studies indicated that the time of the SMPEEU films becoming fragments was 4-12 weeks and the introduction of PEG facilitates the degradation rate of the films. The shape memory properties studies found that SMPEEU films with a PEG content of 23.4 wt % displayed excellent recovery properties with a recovery ratio of 99.8% and a recovery time of 3.9 s at body temperature. In addition, the relative growth rates of the SMPEEU films were greater than 75% after incubation for 72 h, indicating good cytocompatibility in vitro. The SMPEEUs, which possess not only satisfactory tensile properties, degradability, nontoxic degradation products, and cytocompatibility, but also excellent shape recovery properties at body temperature, promised to be an excellent candidate for medical device applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6631253PMC
http://dx.doi.org/10.3390/polym11061002DOI Listing

Publication Analysis

Top Keywords

recovery properties
16
smpeeu films
16
shape recovery
12
body temperature
12
peg content
12
well-defined aliphatic
8
aliphatic diurethane
8
diurethane diisocyanate
8
excellent shape
8
properties
8

Similar Publications

Burn care and treatment differ markedly from other types of wounds, as they are significantly more prone to infections and struggle to maintain fluid balance post-burn. Moreover, the limited self-healing abilities exacerbate the likelihood of scar formation, further complicating the recovery process. To tackle these issues, an asymmetric wound dressing comprising a quercetin-loaded poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P34HB@Qu) hydrophilic layer and a zinc oxide nanoparticle-loaded, thermally treated polyvinylidene fluoride (HPVDF@ZnO) hydrophobic layer is designed.

View Article and Find Full Text PDF

Quantifying the Impact of Soil Moisture Sensor Measurements in Determining Green Stormwater Infrastructure Performance.

Sensors (Basel)

December 2024

Department of Civil and Environmental Engineering, Villanova University, 800 Lancaster Avenue, Villanova, PA 19085, USA.

The ability to track moisture content using soil moisture sensors in green stormwater infrastructure (GSI) systems allows us to understand the system's water management capacity and recovery. Soil moisture sensors have been used to quantify infiltration and evapotranspiration in GSI practices both preceding, during, and following storm events. Although useful, soil-specific calibration is often needed for soil moisture sensors, as small measurement variations can result in misinterpretation of the water budget and associated GSI performance.

View Article and Find Full Text PDF

The Unripe Carob Extract ( L.) as a Potential Therapeutic Strategy to Fight Oxaliplatin-Induced Neuropathy.

Nutrients

December 2024

Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy.

Background: Oxaliplatin-induced neuropathy (OIN) is a severe painful condition that strongly affects the patient's quality of life and cannot be counteracted by the available drugs or adjuvants. Thus, several efforts are devoted to discovering substances that can revert or reduce OIN, including natural compounds. The carob tree, L.

View Article and Find Full Text PDF

Tannase, as a type of tannin-degrading enzyme, can catalyze the hydrolysis of ester and depside bonds in gallotannins, thereby releasing gallic acid and glucose. Based on this reaction mechanism, Tannase can effectively improve the problems of bitter taste, weak aroma, and tea cheese in tea infusion, and is therefore widely used in the tea industry. However, due to high production costs, difficulties in purification and recovery, and insufficient understanding of Tannase properties, the large-scale application of Tannase is severely limited.

View Article and Find Full Text PDF

In an era of escalating environmental challenges, converting organic residues into high-value bioactive compounds provides a sustainable way to reduce waste and enhance resource efficiency. This study explores the potential of the circular bioeconomy through the valorization of agricultural byproducts, with a focus on the antioxidant properties of specific chestnut burr cultivars. Currently, over one-third of food production is wasted, contributing to both humanitarian and environmental crises.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!