A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Graphene-Based Nanomaterials in Soil: Ecotoxicity Assessment Using Reduced Full Life Cycle. | LitMetric

Graphene-based nanomaterials (GBNs) possess unique physicochemical properties, allowing a wide range of applications in physical, chemical, and biomedical fields. Although GBNs are broadly used, information about their adverse effects on ecosystem health, especially in the terrestrial environment, is limited. Therefore, this study aims to assess the toxicity of two commonly used derivatives of GBNs, graphene oxide (GO) and reduced graphene oxide (rGO), in the soil invertebrate using a reduced full life cycle test. At higher exposure concentrations, GO induced high mortality and severe impairment in the reproduction rate, while rGO showed little adverse effect up to 1000 mg/kg. Collectively, our body of results suggests that the degree of oxidation of GO correlates with their toxic effects on , which argues against generalization on GBNs ecotoxicity. Identifying the key factors affecting the toxicity of GBNs, including ecotoxicity, is urgent for the design of safe GBNs for commercial purposes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6631203PMC
http://dx.doi.org/10.3390/nano9060858DOI Listing

Publication Analysis

Top Keywords

graphene-based nanomaterials
8
reduced full
8
full life
8
life cycle
8
graphene oxide
8
gbns
6
nanomaterials soil
4
soil ecotoxicity
4
ecotoxicity assessment
4
assessment reduced
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!