Effects of Steam-Vacuuming and Hot Water Spray Wash on the Microflora of Refrigerated Beef Carcass Surface Tissue Inoculated with Escherichia coli O157:H7, Listeria innocua , and Clostridium sporogenes .

J Food Prot

United States Department of Agriculture, Agricultural Research Service, Roman L. Hruska U.S. Meat Animal Research Center, P.O. Box 166, Clay Center, NE 68933-0166, USA.

Published: February 1997

The fates of several bacterial populations on beef carcass surfaces were examined immediately following hot water washes (W) delivered through a beef carcass wash cabinet or application of steam-vacuum (SV). Additionally, the long-range effectiveness of W and SV on several bacterial populations was also determined during storage up to 21 days at 5°C under vacuum-packaged conditions. Fresh, unaltered bovine feces spiked with antibiotic-resistant strains of Escherichia coli O157:H7, Listeria innocua , and Clostridium sporogenes were used to inoculate beef carcass tissue prior to W or SV treatment. All treatments were equally effective as is indicated by bacterial populations immediately following any of the treatments (P > 0.05); however, the combination of SV followed by W consistently produced arithmetically greater bacterial reductions. In general, all treatments produced initial reductions of up to 2.7 log CFU/cm for APC, lactic acid bacteria, and L. innocua , but by 14 days bacterial numbers had increased to levels of at least 7 log CFU/cm. E. coli O157:H7 was initially reduced by as much as 3.4 log CFU/cm and did not grow to original inoculation levels for the duration of the experiment. Vegetative counts of C. sporogenes were initially reduced by as much as 3.4 log CFU/cm, and numbers continued to decline for the duration of the study. These results indicate that the use of W and SV effectively reduces bacterial populations from beef carcass tissue immediately after treatment. Additionally, storage of treated tissue up to 21 days at 5°C did not appear to offer any competitive advantage to potentially pathogenic microorganisms.

Download full-text PDF

Source
http://dx.doi.org/10.4315/0362-028X-60.2.114DOI Listing

Publication Analysis

Top Keywords

beef carcass
20
bacterial populations
16
log cfu/cm
16
coli o157h7
12
hot water
8
escherichia coli
8
o157h7 listeria
8
listeria innocua
8
innocua clostridium
8
clostridium sporogenes
8

Similar Publications

Background: Obtaining information about the growth rates of animals' organs and tissues can help understand their meat production potential and determine the ideal slaughter weight (SW).

Objectives: This study aimed to determine the effects of production system and SW on the allometric growth of the non-carcass components, carcass cuts, and hind limb tissues of Kivircik lambs.

Methods: A total of 54 single-born male lambs were randomly allocated into production systems (concentrate- and pasture-based) and SW groups: 25-26 kg (LOW), 30-31 kg (MEDIUM), and 35-36 kg (HIGH).

View Article and Find Full Text PDF

Steak samples were collected from the longissimus lumborum muscles of beef carcasses (Canada AA, n = 1505; Canada AAA, n = 1363) over a 3-year period. Steaks were aged for 14 d, and tenderness was determined by slice shear force (SSF). Metabolomic profiling of beef samples was performed using rapid evaporative ionization mass spectrometry (REIMS) (N = 2853).

View Article and Find Full Text PDF

Genome-Wide Scans for Selection Signatures in Ningxia Angus Cattle Reveal Genetic Variants Associated with Economic and Adaptive Traits.

Animals (Basel)

December 2024

State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.

The genetic improvement of beef cattle breeds is crucial for the advancement of the beef cattle industry. Whole-genome resequencing technology has been widely applied in genetic breeding as well as research on selection signatures in beef cattle. In this study, 20× whole-genome resequencing was performed on 282 Angus cattle from the Ningxia region, and a high-quality dataset encompassing extensive genomic variations across the entire genome was constructed.

View Article and Find Full Text PDF

Background: The objective of this study was to evaluate the effects of dietary fatty acids (FA) saturation and lysophospholipids supplementation on growth, meat quality, oxidative stability, FA profiles, and lipid metabolism of finishing beef bulls. Thirty-two Angus bulls (initial body weight: 623 ± 22.6 kg; 21 ± 0.

View Article and Find Full Text PDF

Three-dimensional (3D) measurements extracted from beef carcass images were used to predict the weight of four saleable meat yield (SMY) traits (total SMY and the SMY of the forequarter, flank, and hindquarter) and four primal cuts (sirloin, ribeye, topside and rump). Data were collected at two UK abattoirs using time-of-flight cameras and manual bone out methods. Predictions were made for 484 carcasses, using multiple linear regression (MLR) or machine learning (ML) techniques.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!