The molecular quantum cellular automata paradigm (m-QCA) offers a promising alternative framework to current CMOS implementations. A crucial aspect for implementing this technology concerns the construction of a device which effectively controls intramolecular charge-transfer processes. Tentative experimental implementations have been developed in which a voltage drop is created generating the forces that drive a molecule into a logic state. However, important factors such as the electric field profile, its possible time-dependency and the influence of temperature in the overall success of charge-transfer are relevant issues to be considered in the design of a reliable device. In this work, we theoretically study the role played by these processes in the overall intramolecular charge-transfer process. We have used a Landau-Zener (LZ) model, where different time-dependent electric field profiles have been simulated. The results have been further corroborated employing density functional tight-binding method. The role played by the nuclear motions in the electron-transfer process has been investigated beyond the Born-Oppenheimer approximation by computing the effect of the external electric field in the behavior of the potential energy surface. Hence, we demonstrate that the intramolecular charge-transfer process is a direct consequence of the coherent LZ nonadiabatic tunneling and the hybridization of the diabatic vibronic states which effectively reduces the trapping of the itinerant electron at the donor group.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-648X/ab29c1 | DOI Listing |
Chemistry
January 2025
Indian Institute of Technology Madras, Department of Chemistry, Chennai, Chennai, INDIA.
A series of significantly bulky mono- and di-substituted cyclic alkyl-amino carbene (cAAC)- functionalized cyclopentadiene ring (Cp) compounds were synthesized. The functionalization of the Cp ring with cAAC ligands makes them significantly bulkier, while retaining their ligation properties. These compounds display interesting fluorescence properties.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Chemistry, Indian Institute of Technology Patna, Patna 801103, Bihar, India.
Polyoxometalates (POMs) are composed of nanometric metal-oxide anions and have rich solution chemistry. In this class, Keggin POMs have been identified as the most influential inorganic additives for aqueous nonionic soft matter systems. POMs being at the borderline of classical ions and charged colloids possess fascinating solution properties; the present work aims to delve deeper into the interactions between nanoions and nonionic soft matters from a spectroscopic point of view.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
Center for Molecular Systems and Organic Devices (CMSOD), Key Laboratory for Organic Electronics & Information Displays (KLOEID) and Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing, 210023, China.
Organic photosensitizers (PSs) possessing NIR-II emission and photodynamic/photothermal effect have received a great sense of attention for their cutting-edge applications in imaging-guided multimodal phototherapy. However, it is highly challenging to design efficient PSs with high luminescence and phototherapy performance simultaneously. In this study, a spiro-functionalization strategy is proposed to alleviate aggregate-caused quenching of PSs and promote photodynamic therapy, and the strategy is verified via a spiro[fluorine-9,9'-xanthene]-modified NIR-II PS (named SFX-IC) with an acceptor-donor-acceptor configuration.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
Department of Chemistry, Indian Institute of Technology, Guwahati 781039, India.
Charge transfer (CT) states in polycyclic aromatic hydrocarbons play crucial roles in determining their electronic properties and their potential applications in organic electronics. In this work, we investigate the nature of the excited states in monomers and π-stacked dimers of azulene-fused naphthalene and anthracene systems, focusing on the interplay between structure and excited-state properties. Four different isomers for azulene-fused naphthalene (, , , and ) and anthracene (, , , and ) are considered.
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat 382355, India.
Golgi apparatus (GA) and endoplasmic reticulum (ER) are two of the interesting subcellular organelles that are critical for protein synthesis, folding, processing, post-translational modifications, and secretion. Consequently, dysregulation in GA and ER and cross-talk between them are implicated in numerous diseases including cancer. As a result, simultaneous visualization of the GA and ER in cancer cells is extremely crucial for developing cancer therapeutics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!