Owing to the great potential of iron oxide nanoparticles (NPs) for nanomedicine, large efforts have been made to better control their magnetic properties, especially their magnetic anisotropy to provide NPs able to combine imaging by MRI and therapy by magnetic hyperthermia. In that context, the design of anisotropic NPs appears as a very promising and efficient strategy. Furthermore, their bioactive coating also remains a challenge as it should provide colloidal stability, biocompatibility, furtivity along with good water diffusion for MRI. By taking advantage of our controlled synthesis method of iron oxide NPs with different shapes (cubic, spherical, octopod and nanoplate), we demonstrate here that the dendron coating, shown previously to be very suitable for 10 nm sized iron oxide, also provided very good colloidal, MRI and antifouling properties to the anisotropic shaped NPs. These antifouling properties, demonstrated through several experiments and characterizations, are very promising to achieve specific targeting of disease tissues without affecting healthy organs. On the other hand, the magnetic hyperthermia properties were shown to depend on the saturation magnetization and the ability of NPs to self-align, confirming the need of a balance between crystalline and dipolar magnetic anisotropies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6528/ab2998 | DOI Listing |
Environ Sci Technol
January 2025
Geomicrobiology, Department of Geosciences, University of Tübingen, 72076 Tübingen, Germany.
Iron(III) (oxyhydr)oxide minerals with varying particle sizes commonly coexist in natural environments and are susceptible to both chemical and microbial reduction, affecting the fate and mobility of trace elements, nutrients, and pollutants. The size-dependent reduction behavior of iron (oxyhydr)oxides in single and mixed mineral systems remains poorly understood. In this study, we used microbial and mediated electrochemical reduction approaches to investigate the reduction kinetics and extents of goethite and hematite.
View Article and Find Full Text PDFTalanta
January 2025
College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, PR China. Electronic address:
FeO nanoparticles (NPs) have emerged as pioneering nanozymes with applications in clinical diagnosis, environmental protection and biosensing. However, it is currently limited by insufficient catalytic activity due to poor electron transfer. In this study, we synthesized electron-rich-Zr-doped defect-rich FeO NPs (ZrFeO) using a one-pot solvothermal method.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Earth and Environmental Sciences, University of Illinois at Chicago, Chicago, IL, United States of America.
Municipal solid waste (MSW) landfills represent underexplored microbial ecosystems. Landfills contain variable amounts of antibiotic and construction and demolition (C&D) wastes, which have the potential to alter microbial metabolism due to biocidal or redox active components, and these effects are largely underexplored. To circumvent the challenge of MSW heterogeneity, we conducted a 65-day time series study on simulated MSW microcosms to assess microbiome changes using 16S rRNA sequencing in response to 1) Fe(OH)3 and 2) Na2SO4 to represent redox active components of C&D waste as well as 3) antibiotics.
View Article and Find Full Text PDFFront Pharmacol
January 2025
Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.
Background And Aims: Ferroptosis, a novel concept of programmed cell death proposed in 2012, in kidney disease, has garnered significant attention based on evidence of abnormal iron deposition and lipid peroxidation damage in the kidney. Our study aim to examine the trends and future research directions in the field of ferroptosis in kidney disease, so as to further explore the target or treatment strategy for clinical treatment of kidney disease.
Material And Methods: A thorough survey using the Web of Science Core Collection, focusing on literature published between 2012 and 2024 examining the interaction between kidney disease and ferroptosis was conducted.
Biomed Phys Eng Express
January 2025
Biomedical Engineering , University of Wisconsin-Milwaukee College of Engineering and Applied Science, 3203 N Downer Ave, Milwaukee, Milwaukee, Wisconsin, 53211-3029, UNITED STATES.
Capacitive-based radiofrequency (Rf) radiation at 27 MHz offers a non-invasive approach for inducing hyperthermia, making it a promising technique for thermal cancer therapy applications. To achieve focused and site-specific hyperthermia, external material is required that efficiently convert Rf radiation into localized heat. Nanomaterials capable of absorbing Rf energy and convert into heat for targeted ablation are of critical importance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!