Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Exposure to particulate matter (PM) is strongly linked to human morbidity and mortality, where higher exposure entails higher all-cause daily mortality and increased long-term risk of cardiopulmonary mortality. The objective of this study is to demonstrate how and to what extent the local removal of PM can lead to reduced exposure for the children and teachers in the naturally ventilated courtyard of the American Embassy School (AES) high school building in Delhi. The study is performed by computational fluid dynamics (CFD) with the 3D steady Reynolds-averaged Navier-Stokes (RANS) equations in combination with the realizable k-ε turbulence model on a very high resolution grid. First, CFD validation is performed using wind-tunnel experiments of the flow pattern in and above a generic single street canyon. Next, the case study is conducted where four commercially available electrostatic precipitation (ESP) units are installed at different positions inside the courtyard and the resulting performance is evaluated. PM dispersion is modeled with an Eulerian advection-diffusion equation. It is shown that the best ESP positions yield overall volume-averaged PM concentration reductions up to 34.1% in the courtyard's corridors, demonstrating the proposed mitigation strategy to be effective. Perspectives for further reduction of the PM concentrations and the related reduction of health risks are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2019.05.154 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!