On July 27, 2003, a spill of approximately 31,000 tons of Iranian light crude oil affected the coast of Karachi, Pakistan. Approximately 11 years after the spill, we analyzed polycyclic aromatic hydrocarbons (PAHs) and their alkylated homologues (alkyl-PAHs) as the indicators to evaluate the residual effect of oil spill to the sediment along the Karachi coast. The total concentrations (dry weight) of parent PAHs and alkyl-PAHs ranged from 121.9 to 735.4 and 42.3-1149.9 ng/g, respectively. The estuary and harbor were the two regions with the highest levels of PAHs in the sediment. Conversely, sedimentary PAHs in the oil spill areas and remote coastal areas showed significantly lower levels. Although the results of the source identification indicated the up to 75.2% of the contribution from petroleum and its derivatives, this could only reflect the direct impact of the Karachi city on the presence of PAHs in the coastal sedimentary environment and did not indicated that the oil spill continues to stay 11 years later. Compared with 11 years ago, the sharply reduced PAH content, great changed composition, and the degradation driven trend of diagnostic ratios all indicated a sharp decrease in the influence of PAHs caused by the oil spill. Finally, the ecological risk caused by the PAH residual in the marine sedimentary ecosystem had disappeared along the Karachi coasts, Pakistan.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2019.05.217 | DOI Listing |
Environ Sci Technol
January 2025
Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, California 94609, United States.
Exposure to household air pollution has been linked to adverse health outcomes among women aged 40-79. Little is known about how shifting from biomass cooking to a cleaner fuel like liquefied petroleum gas (LPG) could impact exposures for this population. We report 24-h exposures to particulate matter (PM), black carbon (BC), and carbon monoxide (CO) among women aged 40 to <80 years participating in the Household Air Pollution Intervention Network trial.
View Article and Find Full Text PDFWater Environ Res
January 2025
Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhejiang Ocean University, Zhoushan, P. R. China.
The discharge of oil-laden wastewater from industrial processes and the frequent occurrence of oil spills pose severe threats to the ecological environment and human health. Membrane materials with special wettability have garnered attention for their ability to achieve efficient oil-water separation by leveraging the differences in wettability at the oil-water interface. These materials are characterized by their simplicity, energy efficiency, environmental friendliness, and reusability.
View Article and Find Full Text PDFWater Environ Res
January 2025
Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhejiang Ocean University, Zhoushan, P. R. China.
The tolerance and degradation characteristics of a marine oil-degrading strain Acinetobacter sp. Y9 were investigated in the presence of diesel oil and simulated radioactive nuclides (Mn, Co, Ni, Sr, Cs) at varying concentrations, as well as exposure to γ-ray radiation (Co-60). The maximum tolerable concentrations for Coand Ni were found to be 5 mg/l and 25 mg/l, respectively, while the tolerable concentrations for Mn, Sr, and Cs exceeded 400 mg/l, 1000 mg/l, and 1000 mg/l, respectively.
View Article and Find Full Text PDFRSC Adv
January 2025
Institute of Porous Flow and Fluid Mechanics, Chinese Academy of Sciences Langfang Hebei 065007 China.
Supercritical CO, as an environmentally friendly and pollution-free fluid, has been applied in various EOR techniques such as CO flooding. However, the low viscosity of the gas leads to issues such as early breakthrough, viscous fingering, and gravity override in practical applications. Although effective mobility-control methods, such as CO WAG (water alternating gas)-, CO foam-, and gel-based methods, have been developed to mitigate these phenomena, they do not fundamentally solve the problem of the high gas-oil mobility ratio, which leads to reduced gas sweep efficiency.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Key Laboratory of Sedimentary Basin and Oil and Gas Resources, China Geological Survey, Ministry of Land and Resources & Chengdu Center of Geological Survey, Chengdu 610081, China; College of Materials and Chemistry& Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China. Electronic address:
The distribution and transport of polycyclic aromatic hydrocarbons (PAHs) in urban environments are influenced by both anthropogenic sources and natural landscape features. While previous research has primarily focused on human activities as drivers of PAH pollution, the role of terrain-especially in cities with complex topographies-remains underexplored. To investigate the effect of terrain features on PAH distribution and transport, we analyzed topsoil samples evenly distributed in Chongqing, a city with hilly terrain (elevation: 48-2300 m).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!