Markers of central inflammation in major depressive disorder: A systematic review and meta-analysis of studies examining cerebrospinal fluid, positron emission tomography and post-mortem brain tissue.

Brain Behav Immun

King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, London, UK; National Institute for Health Research Mental Health Biomedical Research Centre, South London and Maudsley NHS Foundation Trust and King's College London, London, UK. Electronic address:

Published: October 2019

Background: Increased peripheral inflammation has been consistently reported in patients with major depressive disorder (MDD). However, only few studies have explored markers of central (brain) inflammation in patients with MDD. The aim of this study is to systematically review in vivo and post-mortem markers of central inflammation, including studies examining cerebrospinal fluid (CSF), positron emission tomography, and post-mortem brain tissues in subjects suffering with MDD compared with controls.

Methods: PubMed and Medline databases were searched up to December 2018. We included studies measuring cerebrospinal fluid (CSF) cytokines and chemokines, positron emission tomography (PET) studies; and post-mortem studies measuring cytokines, chemokines and cell-specific markers of microglia and astrocytes, all in MDD. A meta-analysis was performed only for CSF and PET studies, as studies on post-mortem markers of inflammation had different cell-specific markers and analysed different brain regions.

Results: A total of 69 studies met the inclusion criteria. CSF levels of IL-6 and TNF-α were higher in patients with MDD compared with controls (standardised mean difference SMD 0.37, 95%CI: 0.17-0.57 and SMD 0.58, 95%CI 0.26-0.90, respectively). CSF levels of IL-6 were increased in suicide attempters regardless of their psychiatric diagnosis. Translocator protein, a PET marker of central inflammation, was elevated in the anterior cingulate cortex and temporal cortex of patients with MDD compared with controls (SMD 0.78, 95%CI: 0.41-1.16 and SMD 0.52, 95%CI: 0.19-0.85 respectively). Abnormalities in CSF and PET inflammatory markers were not correlated with those in peripheral blood. In post-mortem studies, two studies found increased markers of microglia in MDD brains, while four studies found no MDD related changes. Of the studies investigating expression of cell-specific marker for astrocytes, thirteen studies reported a decreased expression of astrocytes specific markers, two studies reported increased expression of astrocytes specific markers, and eleven studies did not detect any difference. Four out of six studies reported decreased markers of oligodendrocytes in the prefrontal cortex. Post-mortem brain levels of tumor necrosis alpha (TNF-α) were also found increased in MDD.

Conclusions: Our review suggests the presence of an increase in IL-6 and TNF-alpha levels in CSF and brain parenchyma, in the context of a possible increased microglia activity and reduction of astrocytes and oligodendrocytes markers in MDD. The reduced number of astrocytes may lead to compromised integrity of blood brain barrier with increased monocyte recruitment and infiltration, which is partly supported by post-mortem studies and by PET studies showing an increased TSPO expression in MDD.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbi.2019.06.015DOI Listing

Publication Analysis

Top Keywords

studies
19
markers
12
markers central
12
central inflammation
12
cerebrospinal fluid
12
positron emission
12
emission tomography
12
post-mortem brain
12
patients mdd
12
mdd compared
12

Similar Publications

Shaping the structural dynamics of motor learning through cueing during sleep.

Sleep

January 2025

UR2NF-Neuropsychology and Functional Neuroimaging Research Unit affiliated at CRCN - Centre for Research in Cognition and Neurosciences and UNI - ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium.

Enhancing the retention of recent memory traces through sleep reactivation is possible via Targeted Memory Reactivation (TMR), involving cueing learned material during post-training sleep. Evidence indicates detectable short-term microstructural changes in the brain within an hour after motor sequence learning, and post-training sleep is believed to contribute to the consolidation of these motor memories, potentially leading to enduring microstructural changes. In this study, we explored how TMR during post-training sleep affects performance gains and delayed microstructural remodeling, using both standard Diffusion Tensor Imaging (DTI) and advanced Neurite Orientation Dispersion & Density Imaging (NODDI).

View Article and Find Full Text PDF

Regulation of Dopamine Release by Tonic Activity Patterns in the Striatal Brain Slice.

ACS Chem Neurosci

January 2025

Departments of Psychiatry and Neurology, Division of Molecular Therapeutics, New York State Psychiatric Institute, Columbia University Medical Center, New York, New York 10032, United States.

Voluntary movement, motivation, and reinforcement learning depend on the activity of ventral midbrain neurons, which extend axons to release dopamine (DA) in the striatum. These neurons exhibit two patterns of action potential activity: low-frequency tonic activity that is intrinsically generated and superimposed high-frequency phasic bursts that are driven by synaptic inputs. acute striatal brain preparations are widely employed to study the regulation of evoked DA release but exhibit very different DA release kinetics than recordings.

View Article and Find Full Text PDF

Introduction: Wearables are electronic devices worn on the body to collect health data. These devices, like smartwatches and patches, use sensors to gather information on various health parameters. This review highlights current use and the potential benefit of wearable technology in patients with inflammatory bowel disease (IBD).

View Article and Find Full Text PDF

Protein Phosphatase 2A B'α and B'β promote pollen wall construction partially through BZR1-activated CEP1 in Arabidopsis.

J Exp Bot

January 2025

Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology; Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation; Hebei Key Laboratory of Molecular and Cellular Biology; College of Life Sciences, Hebei Normal University, 050024 Shijiazhuang, China.

A well-constructed pollen wall is essential for pollen fertility, which relies on the contribution of tapetum. Our results demonstrate an essential role of the tapetum-expressed protein phosphatase 2A (PP2A) B'α and B'β in pollen wall formation. The b'aβ double mutant pollen grains harbored sticky remnants and tectum breakages, resulting in failed release.

View Article and Find Full Text PDF

Study Objectives: Deep brain stimulation (DBS) of the subthalamic nucleus (STN) may improve sleep dysfunction, a common non-motor symptom of Parkinson disease (PD). Improvement in motor symptoms correlates with DBS-suppressed local field potential (LFP) activity, particularly in the beta frequency (13 - 30 Hz). Although well-characterized in the short term, little is known about the innate progression of these oscillations across the sleep-wake cycle.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!