Disrupted regulation and accumulation of bile salts (BS) in the liver can contribute towards progressive liver damage and fibrosis. Here, we investigated the role of BS in the progression of cholestatic injury and liver fibrosis using 3D scaffold-free multicellular human liver microtissues (MTs) comprising the cell lines HepaRG, THP-1 and hTERT-HSCs. This in vitro model has been shown to recapitulate cellular events leading to fibrosis including hepatocellular injury, inflammation and activation of HSCs, ultimately leading to increased deposition of extracellular matrix (ECM). In order to better differentiate the contribution of individual cells during cholestasis, the effects of BS were evaluated either on each of the three cell types individually or on the multicellular MTs. Our data corroborate the toxic effects of BS on HepaRG cells and indicate that BS exposure elicited a slight increase in cytokines without causing stellate cell activation. Contrarily, using the MTs, we could demonstrate that low concentrations of BS led to cellular damage and triggered a fibrotic response. This indicates that cellular interplay is required to achieve BS-triggered activation of HSC. Moreover, BS were capable of down-regulating CYP7A1 expression in MTs and elicited abnormal lipid production (accumulation) concordant with clinical cases where chronic cholestasis results in hypercholesterolemia.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tiv.2019.06.002DOI Listing

Publication Analysis

Top Keywords

bile salts
8
cyp7a1 expression
8
fibrotic response
8
abnormal lipid
8
lipid production
8
liver microtissues
8
liver
5
salts regulate
4
regulate cyp7a1
4
expression elicit
4

Similar Publications

Characterization and functionality of 1003 isolated from chicken cecum against .

Front Cell Infect Microbiol

December 2024

Postdoctoral Research Workstation, Heilongjiang Academy of Agricultural Sciences, Harbin, China.

Lactic acid bacteria are widely regarded as safe alternatives to antibiotics in livestock and poultry farming and have probiotic potential. () is a prominent component of pigeon crop microbiota; however, its function is unknown. In this study, a strain of 1003 from pigeon cecum was identified by combining whole genome sequencing and phenotypic analysis, and its safety and probiotic properties were studied.

View Article and Find Full Text PDF

Ursodeoxycholic acid (UDCA) is the first-line treatment for primary biliary cholangitis (PBC), but 20-40% of patients do not respond well to UDCA. We aimed to develop and validate a prognostic model for the early prediction of patients who nonresponse to UDCA. This retrospective analysis was conducted among patients with primary biliary cholangitis(N = 257) to develop a predictive model for early-stage nonresponse to ursodeoxycholic acid (UDCA) therapy.

View Article and Find Full Text PDF

Physiological and artificial solubilizing agents usually enhance apparent solubility of poorly soluble drugs, and in many cases also oral drug exposure. However, exposure may decrease in cases where micellization reduces the molecularly dissolved drug fraction, overriding the solubility advantage. While this information is critical to accurately anticipate the effect of drug micellization on oral absorption, the experimental determination of molecularly dissolved drug concentrations is complex and time consuming.

View Article and Find Full Text PDF

Sour meat is a popular traditional fermented product and is a rich source of novel strains with probiotic potential. In this study, we aimed to assess the probiotic potential of lactic acid bacteria (LAB) strains isolated from fermented sour meat. Firstly, the microbial diversity of sour meat from four different areas in China was analyzed.

View Article and Find Full Text PDF

Amphotericin B (AmB) has been a cornerstone in the treatment of invasive fungal infections for over 6 decades. Compared with conventional amphotericin B deoxycholate (AmB-DOC), liposomal amphotericin B has comparable efficacy but less nephrotoxicity. The main purpose of this study was to investigate the reason why liposomal amphotericin B has similar therapeutic effects but lower toxicity and the differences of distribution in humans between liposomal amphotericin B and AmB-DOC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!