Background: In eukaryotic cells, biogenesis of proteins destined to the secretory pathway begins from the cytosol. Nascent chains are either co-translationally or post-translationally targeted to the endoplasmic reticulum (ER) and translocated across the membrane through the Sec61 complex. For the post-translational translocation, the Sec62/Sec63 complex is additionally required. Sec63, however, is also shown to mediate co-translational translocation of a subset of proteins, the types and characteristics of proteins that Sec63 mediates in translocation still await to be defined.
Methods: To overview the types of proteins that require Sec63 for the ER translocation, we prepared Sec63 mutant lacking the first 39 residues (Sec63_ΔN39) in yeast and assessed initial translocation efficiencies of diverse types of precursors in the sec63_ΔN39 strain by a 5 min metabolic labeling. By employing Blue-Native gel electrophoresis (BN-PAGE), stability of the SEC complex (Sec61 plus Sec62/Sec63 complexes) isolated from cells carrying the Sec63_ΔN39 mutant was examined.
Results: Among the various translocation precursors tested, we found that proper sorting of single- and double-pass membrane proteins was severely impaired in addition to post-translational translocation precursor in the sec63_ΔN39 mutant strain. Stability of the SEC complex was compromised upon deletion of the N-terminal 39 residues.
Conclusions: The N-terminus of Sec63 is important for stability of the SEC complex and Sec63 is required for proper sorting of membrane proteins in vivo.
General Significance: Sec63 is essential on insertion of membrane proteins.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbagen.2019.06.005 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!