In this work, sunflower oil cake (SOC) was identified as bio-sourced material for cellulose nanocrystals (CNC) production using chemical treatments followed by sulfuric acid hydrolysis. The hydrolysis was performed at 64% acid concentration, a temperature of 50 °C and at two different hydrolysis times, 15 min (CNC) and 30 min (CNC). It was found that CNC exhibited a diameter of 9 ± 3 nm and 5 ± 2 nm, a length of 354 ± 101 nm and 329 ± 98 nm, a crystallinity of 75% and 87%, a surface charge density of ~1.57 and ~1.88 sulfate groups per 100 anhydroglucose units and a zeta potential value of -25.6 and -30.7 mV, for CNC and CNC, respectively. The thermal degradation under nitrogen atmosphere started at 225 °C (CNC), which is relatively higher than the temperature for sulfuric acid hydrolyzed CNC from other sources. Due to a high importance of CNC application in aqueous systems, the rheological behaviour of CNC suspensions at various concentrations was evaluated by the steady shear viscosity measurements and the oscillatory dynamic tests. The results showed that the CNC suspensions exhibited a gel-like behaviour at very low CNC concentrations (0.1-1%) wherein a strong CNC entangled network is formed. Polymer nanoreinforcing capability of the newly produced CNC was also investigated in this study. CNC filled PVA nanocomposite films were produced at various CNC contents (1, 3, 5 and 8 wt%) and their mechanical and transparency properties were investigated, resulting in transparent nanocomposite materials with strong mechanical properties. The study suggested other possibilities to utilize agricultural wastes from SOC for CNC production with potential application as reinforcement in polymer nanocomposites.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2019.06.049 | DOI Listing |
Int J Biol Macromol
January 2025
Plant Fibril Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China.
Untreated waste liquid mixtures often support large bacterial populations, posing challenges to effective purification due to high volume and limited filtration efficiency. This study aims to develop a multifunctional filtration membrane that combines both filtration and sterilization, enhancing overall purification efficiency. Using electrospinning technology, we fabricated a superhydrophilic, oil-repellent membrane by integrating the hydrophilic properties of chitosan, antibacterial N-halamine groups, and the mechanical strength of cellulose nanocrystals (CNC).
View Article and Find Full Text PDFPolymers (Basel)
January 2025
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
In this research, fully biobased composites consisting of poly(butylene 2,5-furandicarboxylate) (PBF) and cellulose nanocrystals (CNC) were successfully prepared through a common solution and casting method. The influence of CNC on the crystallization behavior, mechanical property, and hydrophilicity of PBF was systematically investigated. Under different crystallization processes, the crystallization of PBF was obviously promoted by CNC as a biobased nucleating agent.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Department of Chemistry, Bar-Ilan Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel.
Amidst the pervasive threat of bacterial afflictions, the imperative for advanced antibiofilm surfaces with robust antimicrobial efficacy looms large. This study unveils a sophisticated ultrasonic synthesis method for cellulose nanocrystals (CNCs, 10-20 nm in diameter and 300-900 nm in length) and their subsequent application as coatings on flexible substrates, namely cotton (CC-1) and membrane (CM-1). The cellulose nanocrystals showed excellent water repellency with a water contact angle as high as 148° on the membrane.
View Article and Find Full Text PDFPharmaceuticals (Basel)
January 2025
UCIBIO-Applied Molecular Biosciences Unit, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
: An emerging practice within the concept of circular beauty involves the upcycling of agro-industrial by-products. Cork processing, for instance, yields by-products like cork powder, which presents an opportunity to create value-added cosmetic ingredients. Building upon our previous research, demonstrating the antioxidant potential of hydroalcoholic extracts derived from two distinct cork powders (P0 and P1), in this work, aqueous extracts were prepared and analyzed.
View Article and Find Full Text PDFBiomolecules
January 2025
Flow Cytometry Unit, Department of Clinical Pathology, Hospitais da Universidade de Coimbra, Unidade Local de Saúde de Coimbra, Avenida Bissaya Barreto, Bloco Hospitalar de Celas, nº 205, 3000-076 Coimbra, Portugal.
Background: Breast cancer is a heterogeneous malignant disease with a varying prognosis and is classified into four molecular subtypes. It remains one of the most prevalent cancers globally, with the tumor microenvironment playing a critical role in disease progression and patient outcomes.
Methods: This study evaluated tumor samples from 40 female patients with luminal A and B breast cancer, utilizing flow cytometry to phenotypically characterize the immune cells and tumor cells present within the tumor tissue.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!