A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Genomic prediction offers the most effective marker assisted breeding approach for ability to prevent arsenic accumulation in rice grains. | LitMetric

The high concentration of arsenic (As) in rice grains, in a large proportion of the rice growing areas, is a critical issue. This study explores the feasibility of conventional (QTL-based) marker-assisted selection and genomic selection to improve the ability of rice to prevent As uptake and accumulation in the edible grains. A japonica diversity panel (RP) of 228 accessions phenotyped for As concentration in the flag leaf (FL-As) and in the dehulled grain (CG-As), and genotyped at 22,370 SNP loci, was used to map QTLs by association analysis (GWAS) and to train genomic prediction models. Similar phenotypic and genotypic data from 95 advanced breeding lines (VP) with japonica genetic backgrounds, was used to validate related QTLs mapped in the RP through GWAS and to evaluate the predictive ability of across populations (RP-VP) genomic estimate of breeding value (GEBV) for As exclusion. Several QTLs for FL-As and CG-As with a low-medium individual effect were detected in the RP, of which some colocalized with known QTLs and candidate genes. However, less than 10% of those QTLs could be validated in the VP without loosening colocalization parameters. Conversely, the average predictive ability of across populations GEBV was rather high, 0.43 for FL-As and 0.48 for CG-As, ensuring genetic gains per time unit close to phenotypic selection. The implications of the limited robustness of the GWAS results and the rather high predictive ability of genomic prediction are discussed for breeding rice for significantly low arsenic uptake and accumulation in the edible grains.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6563978PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0217516PLOS

Publication Analysis

Top Keywords

genomic prediction
12
predictive ability
12
rice grains
8
uptake accumulation
8
accumulation edible
8
edible grains
8
ability populations
8
genomic
5
ability
5
rice
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!