The physics of electronic energy level alignment at interfaces formed between molecules and metals can in general be accurately captured by the ab initio GW approach. However, the computational cost of such GW calculations for typical interfaces is significant, given their large system size and chemical complexity. In the past, approximate self-energy corrections, such as those constructed from image-charge models together with gas-phase molecular level corrections, have been used to compute level alignment with good accuracy. However, these approaches often neglect dynamical effects of the polarizability and require the definition of an image plane. In this work, we propose a new approximation to enable more efficient GW-quality calculations of interfaces, where we greatly simplify the calculation of the noninteracting polarizability, a primary bottleneck for large heterogeneous systems. This is achieved by first computing the noninteracting polarizability of each individual component of the interface, e.g., the molecule and the metal, without the use of large supercells, and then using folding and spatial truncation techniques to efficiently combine these quantities. Overall this approach significantly reduces the computational cost for conventional GW calculations of level alignment without sacrificing the accuracy. Moreover, this approach captures both dynamical and nonlocal polarization effects without the need to invoke a classical image-charge expression or to define an image plane. We demonstrate our approach by considering a model system of benzene at relatively low coverage on the aluminum (111) surface. Although developed for such interfaces, the method can be readily extended to other heterogeneous interfaces.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jctc.9b00326 | DOI Listing |
J Am Chem Soc
January 2025
Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, Kowloon 999077, China.
Heterogeneous ice nucleation is a widespread phenomenon in nature. Despite extensive research on ice nucleation near biological antifreeze proteins, a probe for ice nucleation and growth processes at the atomic level is still lacking. Herein, we present simulation evidence of the heterogeneous ice nucleation process on the ice-binding surface (IBS) of the antifreeze protein (TmAFP).
View Article and Find Full Text PDFAdv Ther
January 2025
Cytel, Inc., Waltham, MA, USA.
Introduction: Fabry disease (FD) is a rare lysosomal storage disorder that is associated with pain and progressive damage to the renal, cardiac, and cerebrovascular systems. Enzyme replacement therapy (ERT) is one of the treatment options for FD and the most recently approved ERT agent, pegunigalsidase alfa, has shown clinical efficacy in three phase 3 clinical trials of adults with FD: BALANCE, BRIDGE, and BRIGHT. Recent published guidelines support the mapping of health utility state data to the EuroQol-5 Dimension-3 Level (EQ-5D-3L) index to align with the preferred methodology used by the National Institute for Health and Care Excellence (NICE).
View Article and Find Full Text PDFVet Res Commun
January 2025
Department of Veterinary Medicine and Animal Sciences, University of Milan, Lodi, 26900, Italy.
South American camelids (SACs), particularly llamas (Lama glama) and alpacas (Vicugna pacos) are gaining popularity in Europe. Initially valued for their fiber and land management capabilities, these animals are now also kept for animal therapy, outdoor activities, and as companion animals. Despite their close interactions with humans and other animals, there is limited research on the transmission of microbes or antimicrobial resistance genes from SACs.
View Article and Find Full Text PDFParasitol Res
January 2025
Medical Parasitology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
Blastocystis, an eukaryote, inhabits the intestinal tract of humans and animals worldwide. Lactobacillus acidophilus (L. acidophilus), a probiotic, has been reported to be effective against blastocystosis.
View Article and Find Full Text PDFJ Cell Biol
April 2025
Department of Physics and Astronomy, University of Denver, Denver, CO, USA.
In the early Drosophila embryo, germband elongation is driven by oriented cell intercalation through t1 transitions, where vertical (dorsal-ventral aligned) interfaces contract and then resolve into new horizontal (anterior-posterior aligned) interfaces. Here, we show that contractile events produce a continuous "rectification" of cell interfaces, in which interfaces systematically rotate toward more vertical orientations. As interfaces rotate, their behavior transitions from elongating to contractile regimes, indicating that the planar polarized identities of cell-cell interfaces are continuously re-interpreted in time depending on their orientation angle.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!