Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In an endeavor to find the novel natural radioprotector to secure normal cells surrounding cancerous cell during radiation exposure, () aqueous stem bark extract was evaluated for radioprotective activity using , and models. extract exhibited concentration dependent protective effect on electron beam radiation (EBR) induced damage to pBR322 DNA; the highest protection was achieved at 150 μg concentrations. Similarly, extract (400 mg/kg) administrated to mice prior to irradiation protected DNA from the radiation damage, which was confirmed by inhibiting comet parameters. The study showed a significant increase in the levels of glutathione and superoxide dismutase levels. The study also revealed that administration of at the different dose to mice significantly reduced EBR induced MDA, sialic acid and nitric acid levels. Further extract prevented histophatological changes of skin and liver. In contrast, protein-protein interaction studies were performed to find the hub protein, involved in radiation-induced DNA damage. Among 437 proteins that are found expressed during radiation, p53 was found to be a master protein regulating the whole pathway. Molecular interaction between p53 and extract was predicted by quantitative structure-activity relationship and ADMET properties. Biomolecules such as quercetin, myricetin, and 7-hydroxyflavone were found to be promising inhibitors of p53 protein and may help in the protection of EBR induced DNA damage during cancer treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6543085 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2019.e01749 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!