The biotechnology for in vitro embryo production is becoming increasingly popular, being applied to humans and domestic animals. Embryo development can be achieved with either 20% or 5% oxygen tension. The extracellular vesicles (EVs) are secreted by different cell types and carry bioactive materials. Our objective was to determine the secretion pattern and micro RNA (miRNA) contents of EVs released in the bovine embryo culture environment-embryo and cumulus cell monolayer-on Days 3 and 7 of in vitro culture under two different oxygen tensions: High (20%) and low (5%). The EVs were isolated from the medium and analyzed to determine size, concentration, and miRNA levels. EVs concentration in low oxygen tension increased on Day 3 and decreased on Day 7. Additionally, altered EV miRNAs derived from the embryo-cumulus culture medium were predicted to regulate survival and proliferation-related pathways on Days 3 and 7. Moreover, miR-210 levels decreased in EVs isolated from the culture medium under high oxygen tension suggesting that this miRNA can be used as a marker for normoxia since it is associated with low oxygen tension. In summary, this study provides knowledge of the oxygen tension effects on EVs release and content, and potentially, on cell-to-cell communication during in vitro bovine embryo production.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mrd.23223DOI Listing

Publication Analysis

Top Keywords

oxygen tension
24
bovine embryo
12
culture medium
12
extracellular vesicles
8
mirna contents
8
embryo culture
8
embryo production
8
evs isolated
8
low oxygen
8
oxygen
7

Similar Publications

Islet transplantation and more recently stem cell-derived islets were shown to successfully re-establish glycemic control in people with type 1 diabetes under immunosuppression. These results were achieved through intraportal infusion which leads to early graft losses and limits the capacity to contain and retrieve implanted cells in case of adverse events. Extra-hepatic sites and encapsulation devices have been developed to address these challenges and potentially create an immunoprotective or immune-privileged environment.

View Article and Find Full Text PDF

Microplastics (MPs) pose an emerging threat to vegetable growing soils in Harbin, which have a relatively high abundance (11,065 n/kg) with 17.26 of potential ecological risk of single polymer hazard (EI) and 33.92 of potential ecological risk index (PERI).

View Article and Find Full Text PDF

Spirulina Supplementation Alleviates Intense Exercise-Induced Damage and Modulates Gut Microbiota in Mice.

Nutrients

January 2025

State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China.

Background: , which are filamentous cyanobacteria, have gained significant popularity in the food industry, medicine, and aquaculture.

Methods: In this study, our objective was to explore the influence of on the gut microbiota and exercise capacity of mice undergoing high-intensity exercise. Twenty-four male BALB/c mice were divided into four groups, with six mice in each group.

View Article and Find Full Text PDF

Something Old and Something New-A Pilot Study of Shrinkage and Modern Imaging Devices.

Life (Basel)

December 2024

Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany.

Shrinkage, a heat-induced process, reorganizes collagen fibers, thereby reducing wound surface area. This technique, commonly applied in surgeries like periareolar mastopexy and skin grafting, is well-established. Despite its widespread use, modern imaging has recently enabled detailed observation of shrinkage's effects on tissue temperature and oxygenation.

View Article and Find Full Text PDF

Exploring the Molecular Interplay Between Oxygen Transport, Cellular Oxygen Sensing, and Mitochondrial Respiration.

Antioxid Redox Signal

January 2025

Laboratory of Biochemistry and Vascular Biology, Center for Biologics Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, Maryland, USA.

The mitochondria play a key role in maintaining oxygen homeostasis under normal oxygen tension (normoxia) and during oxygen deprivation (hypoxia). This is a critical balancing act between the oxygen content of the blood, the tissue oxygen sensing mechanisms, and the mitochondria, which ultimately consume most oxygen for energy production. We describe the well-defined role of the mitochondria in oxygen metabolism with a special focus on the impact on blood physiology and pathophysiology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!