Instability of perovskite quantum dots (QDs) toward humidity remains one of the major obstacles for their long-term use in optoelectronic devices. Herein, a general amphiphilic star-like block copolymer nanoreactor strategy for in situ crafting a set of hairy perovskite QDs with precisely tunable size and exceptionally high water and colloidal stabilities is presented. The selective partition of precursors within the compartment occupied by inner hydrophilic blocks of star-like diblock copolymers imparts in situ formation of robust hairy perovskite QDs permanently ligated by outer hydrophobic blocks via coprecipitation in nonpolar solvent. These size- and composition-tunable perovskite QDs reveal impressive water and colloidal stabilities as the surface of QDs is intimately and permanently ligated by a layer of outer hydrophobic polymer hairs. More intriguingly, the readily alterable length of outer hydrophobic polymers renders the remarkable control over the stability enhancement of hairy perovskite QDs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.201901602 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!