A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Comparative transcriptomic analysis of high- and low-oil reveals a coordinated mechanism for the regulation of upstream and downstream multigenes for high oleic acid accumulation. | LitMetric

Tea oil camellia () is an important woody oil tree in southern China. However, little is known regarding the molecular mechanisms that contribute to high oleic acid accumulation in tea oil camellia. Herein, we measured the oil content and fatty acid compositions of high- and low-oil tea oil camellia seeds and investigated the global gene expression profiles by RNA-seq. The results showed that at the early, second and third seed developmental stages, a total of 64, 253, and 124 genes, respectively, were significantly differentially expressed between the high- and low-oil cultivars. Gene ontology (GO) enrichment analysis of the identified differentially expressed transcription factors (TFs; ABI3, FUS3, LEC1, WRI1, TTG2 and DOF4.6) revealed some critical GO terms associated with oil biosynthesis and fatty acid accumulation, including glycolysis, zinc ion binding, positive regulation of fatty acid biosynthetic process, triglyceride biosynthetic process, seed coat development, abscisic acid-mediated signaling pathway and embryo development. Comprehensive comparisons of transcriptomic profiles and expression analysis of multigenes based on qRT-PCR showed that coordinated high expression of the upstream genes , and directly increased the relative levels of C16:0-ACP, which provided enough precursor resources for oleic acid biosynthesis. Continuous high expression of the gene accelerated oleic acid synthesis and accumulation, and coordinated low expression of the downstream genes and decreased the consumption of oleic acid for conversion. The coordinated regulation of these multigenes ensures the high accumulation of oleic acid in the seeds of tea oil camellia. Our data represent a comprehensive transcriptomic study of high- and low-oil tea oil camellia, not only increasing the number of sequences associated with lipid biosynthesis and fatty acid accumulation in public resource databases but also providing a scientific basis for genetic improvement of the oleic acid content in woody oil trees.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6556164PMC
http://dx.doi.org/10.1007/s13205-019-1792-7DOI Listing

Publication Analysis

Top Keywords

oleic acid
28
tea oil
20
oil camellia
20
high- low-oil
16
acid accumulation
16
fatty acid
16
acid
11
oil
9
high oleic
8
accumulation tea
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!