Fluorine substituted methoxyphenylalkyl amides as potent melatonin receptor agonists.

Medchemcomm

School of Biomedical and Health Sciences , Division of Reproduction and Endocrinology , King's College London, London SE1 1UL , UK.

Published: March 2019

A series of fluorine substituted methoxyphenylalkyl amides were prepared with different orientations of the fluorine and methoxy groups with respect to the alkylamide side chain and with alkyl sides of differing lengths ( = 1-3). β-Dimethyl and α-methyl derivatives were also synthesised. The compounds were tested as melatonin agonists and antagonists using the pigment aggregation of melanophores as the biological assay. A number of these compounds were potent melatonin agonists, the potency depending on the length of the alkyl chain, the orientation of the methoxy and fluorine substituents, the amide chain length and, for the ethyl side-chain analogues, the presence of β-substituents.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6530086PMC
http://dx.doi.org/10.1039/c8md00604kDOI Listing

Publication Analysis

Top Keywords

fluorine substituted
8
substituted methoxyphenylalkyl
8
methoxyphenylalkyl amides
8
potent melatonin
8
melatonin agonists
8
fluorine
4
amides potent
4
melatonin receptor
4
receptor agonists
4
agonists series
4

Similar Publications

Non-fused electron acceptors have obtained increasing curiosity in organic solar cells (OSCs) thanks to simple synthetic route and versatile chemical modification capabilities. However, non-fused acceptors with varying quinoxaline core and as-cast device have rarely been explored, and the molecular structure-photovoltaic performance relationship of such acceptors remains unclear. Herein, two non-fused acceptors L19 and L21 with thienyl substituted non-fluorinated/fluorinated quinoxaline core were developed via five-step synthesis.

View Article and Find Full Text PDF

Indole, a ubiquitous structural motif in bioactive compounds, has played a pivotal role in drug discovery. Among indole derivatives, indole-3-carboxaldehyde (I3A) has emerged as a particularly promising scaffold for the development of therapeutic agents. This review delves into the recent advancements in the chemical modification of I3A and its derivatives, highlighting their potential applications in various therapeutic areas.

View Article and Find Full Text PDF

Prosthetic valve endocarditis (PVE) is the medical term used to describe a focus of infection involving a valvular substitute within the heart. It is a significant concern in the field of cardiology, and the epidemiology of PVE has seen notable developments over the last five decades. The disease currently affects an older demographic and is becoming increasingly prevalent in patients with transcatheter-implanted valves.

View Article and Find Full Text PDF

Correction of aberrant splicing of ELP1 pre-mRNA by kinetin derivatives - A structure activity relationship study.

Eur J Med Chem

December 2024

Laboratory of Experimental Biology, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic; Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 775 15 Olomouc, Czech Republic. Electronic address:

Familial dysautonomia is a debilitating congenital neurodegenerative disorder with no causative therapy. It is caused by a homozygous mutation in ELP1 gene, resulting in the production of the transcript lacking exon 20. The compounds studied as potential treatments include the clinical candidate kinetin, a plant hormone from the cytokinin family.

View Article and Find Full Text PDF

Pentafluoroorthotellurate Uncovered: Theoretical Perspectives on an Extremely Electronegative Group.

Inorg Chem

January 2025

Departamento de Química Física and Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza 50009, Spain.

Article Synopsis
  • The pentafluoroorthotellurate group (-OTeF, teflate) is a potent electron-withdrawing substitute for fluoride, known for its stability and size, which helps avoid bridging ligand behavior.
  • This study employs advanced Quantum Chemical Topology methods to analyze the electronic structure and bonding of the teflate group, comparing its electronegativity with halogens and investigating the interactions in various XOTeF systems.
  • Findings reveal that while teflate exhibits strong electron-withdrawing abilities akin to fluorine, its bonding is predominantly ionic and shares similar electronegativity traits with other O-donor groups.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!