We present a comparison of the performance of four miniature portable Raman spectrometers for the discrimination of carotenoids in samples of carotene-producing microorganisms. Two spectrometers using a green laser allowing to obtain Resonance Raman (or pre-Resonance Raman) signals, one instrument with a 785 nm laser, and a recently developed Portable Sequentially Shifted Excitation Raman spectrometer (PSSERS) were used for identifying major pigments of different halophilic (genera , , , , , ) and non-halophilic microorganisms (, ). Using all the tested instruments including the PSSERS, strong carotenoids signals corresponding to the stretching vibrations in the polyene chain and in-plane rocking modes of the attached CH groups were found at the correct positions. Raman spectra of carotenoids can be obtained from different types of microbiological samples (wet pellets, lyophilized culture biomass and pigment extracts in organic solvents), and can be collected fast and without time-consuming procedures.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6548819 | PMC |
http://dx.doi.org/10.3389/fmicb.2019.01155 | DOI Listing |
Anal Methods
January 2025
Engineering Research Center of Intelligent Theranostics Technology and Instruments, Ministry of Education, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211166, China.
The presented research introduces a new method to identify drug-resistant bacteria rapidly with high accuracy using artificial intelligence combined with Multi-angle Dynamic Light Scattering (MDLS) signals and Raman scattering signals. The main research focus is to distinguish methicillin-resistant (MRSA) and methicillin-sensitive (MSSA). First, a microfluidic platform was developed embedded with optical fibers to acquire the MDLS signals of bacteria and Raman scattering signals obtained by using a Raman spectrometer.
View Article and Find Full Text PDFInt J Pharm
January 2025
Pharmaceutical Engineering Research Group (PharmaEng), Department of Pharmaceutical Analysis, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium. Electronic address:
The tablet diversion strategy, based on in-line near-infrared (NIR) tablet press feed frame measurements, can be a key component of both batch and continuous oral solid dose manufacturing processes. It enables real-time, high-frequency monitoring and control, enhancing process understanding and compliance compared to conventional interval-based sampling methods. Central to this strategy are NIR spectrometers, which serve as PAT systems for in-line blend uniformity monitoring in the feed of the tablet press.
View Article and Find Full Text PDFAnal Chim Acta
January 2025
Department of Chemistry, State University of New York at Binghamton, Binghamton, NY, 13902, USA; Materials Engineering and Science Program, State University of New York at Binghamton, Binghamton, NY, 13902, USA. Electronic address:
Background: Pesticides are widely used in agriculture to control pests and enhance crop yields. However, post-harvest, there are growing concerns about the potential health risks posed by pesticide residues on produce surfaces. Analyzing these residues is challenging due to their typically low concentrations and the potential interference from the complex matrix of the produce's surface.
View Article and Find Full Text PDFDent Mater
January 2025
KU Leuven, Department of Oral Health Sciences, BIOMAT & UZ Leuven, Dentistry, Kapucijnenvoer 7, 3000 Leuven, Belgium. Electronic address:
Objectives: To evaluate the effect of different zirconia compositions and manufacturing processes on the light irradiance (LI), to measure the degree of conversion (DC) of solely light-curing restorative composite underneath these zirconia grades and to evaluate the respective zirconia microstructures.
Methods: Six dental zirconia grades (GC HT, GC UHT [GC]; Katana HT, Katana UTML [Kuraray Noritake]; Lava Esthetic, Lava Plus [3 M Oral Care]) were cut and sintered per manufacturer instructions. One 3D-printed zirconia grade (XJet [XJET]) was prepared according to previous research.
Anal Chem
January 2025
Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, United States.
Effective dietary strategies and interventions for monitoring dietary exposures require accurate and noninvasive methods to understand how diet modulates health and risk of obesity; advances in technology are transforming the landscape and enabling more specific tailored approaches to nutritional guidance. This study explores the use of Raman spectroscopy (RS), a noninvasive and nondestructive analytical technique, to identify changes in the mice skin in response to constant dietary exposures. We found that RS is highly accurate to determine body composition as a result of habitual dietary patterns, specifically Vegan, Typical American, and Ketogenic diets, all very common in the US context.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!