Any visual sensor, whether artificial or biological, maps the 3D-world on a 2D-representation. The missing dimension is depth and most species use stereo vision to recover it. Stereo vision implies multiple perspectives and matching, hence it obtains depth from a pair of images. Algorithms for stereo vision are also used prosperously in robotics. Although, biological systems seem to compute disparities effortless, artificial methods suffer from high energy demands and latency. The crucial part is the correspondence problem; finding the matching points of two images. The development of event-based cameras, inspired by the retina, enables the exploitation of an additional physical constraint-time. Due to their asynchronous course of operation, considering the precise occurrence of spikes, Spiking Neural Networks take advantage of this constraint. In this work, we investigate sensors and algorithms for event-based stereo vision leading to more biologically plausible robots. Hereby, we focus mainly on binocular stereo vision.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6546825PMC
http://dx.doi.org/10.3389/fnbot.2019.00028DOI Listing

Publication Analysis

Top Keywords

stereo vision
24
sensors algorithms
8
vision
6
stereo
5
neuromorphic stereo
4
vision survey
4
survey bio-inspired
4
bio-inspired sensors
4
algorithms visual
4
visual sensor
4

Similar Publications

Residual Vision Transformer and Adaptive Fusion Autoencoders for Monocular Depth Estimation.

Sensors (Basel)

December 2024

Institute of Computer and Communication Engineering, Department of Electrical Engineering, National Cheng Kung University, Tainan 701, Taiwan.

Precision depth estimation plays a key role in many applications, including 3D scene reconstruction, virtual reality, autonomous driving and human-computer interaction. Through recent advancements in deep learning technologies, monocular depth estimation, with its simplicity, has surpassed the traditional stereo camera systems, bringing new possibilities in 3D sensing. In this paper, by using a single camera, we propose an end-to-end supervised monocular depth estimation autoencoder, which contains an encoder with a structure with a mixed convolution neural network and vision transformers and an effective adaptive fusion decoder to obtain high-precision depth maps.

View Article and Find Full Text PDF
Article Synopsis
  • Accurate 3D information estimation from images is crucial for computer vision, and while binocular stereo vision is a common approach, it faces challenges with baseline distance affecting reliability.
  • This research proposes a new method that progressively increases the baseline in multiocular vision, introducing a rectification technique that significantly reduces distortion errors in the images.
  • The method enhances disparity estimation accuracy by 20% for multiocular images and demonstrates superior performance through extensive evaluations against existing methods.
View Article and Find Full Text PDF

In diagnosing and treating prostate cancer the flexible bevel tip needle insertion surgical technique is commonly used. Bevel tip needles experience asymmetric loading on the needle's tip, inducing natural bending of the needle and enabling control mechanisms for precise placement of the needle during surgery. Several methods leverage the needles natural bending to provide autonomous control of needle insertion for accurate needle placement in an effort to reduce excess tissue damage and improve patient outcomes from needle insertion intraventions.

View Article and Find Full Text PDF

The study sought to compare the number of cycles (NOS) for the first and second thirty-seconds (FASTS) within 1 min of accommodative facility (AF) and vergence facility (VF) testing to explore possibilities of reducing testing time to 30 s. In this cross-sectional study, a multistage sample of school children (aged 8-17 years) was taken through ocular-visual screening. Eligible participants (586) underwent refraction, stereo-acuity measurement, AF testing using ± 2D lens flippers, and VF testing using 3 BI/12 BO flipper prisms.

View Article and Find Full Text PDF

Autonomous technologies have revolutionized transportation, military operations, and space exploration, necessitating precise localization in environments where traditional GPS-based systems are unreliable or unavailable. While widespread for outdoor localization, GPS systems face limitations in obstructed environments such as dense urban areas, forests, and indoor spaces. Moreover, GPS reliance introduces vulnerabilities to signal disruptions, which can lead to significant operational failures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!