A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Quantitative and Discrete Evolutionary Changes in the Egg-Laying Behavior of Single Females. | LitMetric

How a nervous system assembles and coordinates a suite of elementary behavioral steps into a complex behavior is not well understood. While often presented as a stereotyped sequence of events, even extensively studied behaviors such as fly courtship are rarely a strict repetition of the same steps in a predetermined sequence in time. We are focusing on oviposition, the act of laying an egg, in flies of the genus to describe the elementary behavioral steps or microbehaviors that a single female fly undertakes prior to and during egg laying. We have analyzed the hierarchy and relationships in time of these microbehaviors in three closely related species with divergent egg-laying preferences and uncovered cryptic differences in their behavioral patterns. Using high-speed imaging, we quantified in depth the oviposition behavior of single females of and in a novel behavioral assay. By computing transitions between microbehaviors, we identified a common ethogram structure underlying oviposition of all three species. Quantifying parameters such as relative time spent on a microbehavior and its average duration, however, revealed clear differences between species. In addition, we examined the temporal dynamics and probability of transitions to different microbehaviors relative to a central event of oviposition, ovipositor contact. Although the quantitative analysis highlights behavioral variability across flies, it reveals some interesting trends for each species in the mode of substrate sampling, as well as possible evolutionary differences. Larger datasets derived from automated video annotation will overcome this paucity of data in the future, and use the same framework to reappraise these observed differences. Our study reveals a common architecture to the oviposition ethogram of three species, indicating its ancestral state. It also indicates that 's behavior departs quantitatively and qualitatively from that of the outgroup species, in line with its known divergent ethology. Together, our results illustrate how a global shift in ethology breaks down in the quantitative reorganization of the elementary steps underlying a complex behavior.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6549446PMC
http://dx.doi.org/10.3389/fnbeh.2019.00118DOI Listing

Publication Analysis

Top Keywords

behavior single
8
single females
8
elementary behavioral
8
behavioral steps
8
complex behavior
8
species divergent
8
transitions microbehaviors
8
three species
8
species
6
behavior
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!