The in vitro environment can influence not only the molecular background of glioblastoma drug-resistance and treatment efficiency, but also the mechanisms and pathways of cell death. Both crucial molecular pathways and the deregulation of miRNAs are thought to participate in tumor therapy-resistance. The aim of our study is to examine the potential influence of ex vivo conditions on the expression of miRNAs engaged in the machinery of tumor-drug resistance, since in vitro models are commonly used for testing new therapeutics. Glioblastoma-derived cells, cultured under three different sets of conditions, were used as experimental models in vitro. The expression of 84 miRNAs relevant to brain tumorigenesis was evaluated by multi-miRNA profiling for initial tumors and their corresponding cultures. Finally, the expression of selected miRNAs related to temozolomide-resistance (miR-125b, miR-130a, miR-21, miR-221, miR-222, miR-31, miR-149, miR-210, miR-181a) was assessed by real-time PCR for each tumor and neoplastic cells in cultures. Our results demonstrate significant discrepancies in the expression of several miRNAs between tumor cells in vivo and in vitro, with miR-130a, miR-221, miR-31, miR-21, miR-222, miR-210 being the most marked. Also differences were observed between particular models in vitro. The results of computational analysis revealed the interplay between examined miRNAs and their targets involved in processes of glioblastoma chemosensitivity, including the genes relevant to temozolomide response (, , , , ). The artificial environment may influence the selective proliferation of cell populations carrying specific patterns of miRNAs and/or the phenotype of neoplastic cells (eg differentiation) by the action of molecular events including miRNAs. These phenomena may influence the tumor-responsiveness to particular drugs, disturbing the evaluation of their efficacy in vitro, with unpredictable results caused by the interdependency of molecular pathways.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6535444 | PMC |
http://dx.doi.org/10.2147/OTT.S190601 | DOI Listing |
PLoS One
January 2025
Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.
Preeclampsia is characterized by insufficient invasion of extravillous trophoblasts and is a consequence of failed adaption of extravillous trophoblasts to changes in the intrauterine environment developing embryo. Specific miRNAs are implicated in the development of preeclampsia (PE). miR-455-5p is present at low levels in PE but its role is not known.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Traditional Chinese Medicine, Ruijin Hospital, Shanghai Jiao Tong University Medical College, Shanghai, China.
Mycobacterium abscessus is a rapidly growing nontuberculous mycobacterium that causes severe pulmonary infections. Recent studies indicate that ferroptosis may play a critical role in the pathogenesis of M. abscessus pulmonary disease.
View Article and Find Full Text PDFJ ECT
January 2025
Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, Brescia.
Objectives: Electroconvulsive therapy (ECT) is one of the most effective treatments for treatment-resistant depression (TRD), even though the molecular mechanisms underlying its efficacy remain largely unclear. This study aimed, for the first time, to analyze plasma levels of miRNAs, key regulators of gene expression, in TRD patients undergoing ECT to investigate potential changes during treatment and their associations with symptom improvement.
Methods: The study involved 27 TRD patients who underwent ECT.
Adv Sci (Weinh)
January 2025
School of Advanced Agriculture Sciences and School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing, 100871, China.
In plants, microRNAs (miRNAs) participate in complex gene regulatory networks together with the transcription factors (TFs) in response to biotic and abiotic stresses. To date, analyses of miRNAs-induced transcriptome remodeling are at the whole plant or tissue levels. Here, Arabidopsis's ABA-induced single-cell RNA-seq (scRNA-seq) is performed at different stages of time points-early, middle, and late.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Chemistry, University of Alberta, Edmonton, Canada.
Cellular protein expression is coordinated posttranscriptionally by an intricate regulatory network. The current presumption is that microRNAs (miRNAs) work by repression of functionally related targets within a system. In recent work, up-regulation of protein expression via direct interactions of messenger RNA with miRNA has been found in dividing cells, providing an additional mechanism of regulation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!