An efficient approach was developed for synthesis of 3-tosyloxy-4-hydroxycoumarins under mild conditions by using Koser's reagents. The reaction tolerated various functional groups, and the products served as useful aromatic building blocks. Additionally, a plausible mechanism via iodonium ylide was proposed, and the oral anticoagulant Warfarin was synthesized in good yield.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.joc.9b01323 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Fudan University, Laboratory of Advanced Materials, Shanghai, 200433, Shanghai, CHINA.
Tellurium (Te), with its rich valence states (-2 to +6), could endow aqueous batteries with potentially high specific capacity. However, achieving complete and stable hypervalent Te0/Te4+ electrochemistry in an aqueous environment poses significant challenges, owing to the sluggish reduction kinetics, the easy dissolution of Te4+ species, and a controversial energy storage mechanism. Herein, for the first time, we demonstrate an amorphous strategy for robust aqueous TeO2/Te electrochemistry.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan.
We have developed transition-metal-free synthetic methodologies for dibenzoxazepinones utilizing salicylamides as starting materials and employing two distinct types of successive hypervalent iodine-mediated arylocyclizations. This synthetic protocol encompasses selective phenol -arylation of salicylamides with diaryliodonium salts, followed by electrophilic aromatic amination utilizing chemically or electronically generated hypervalent iodine reagents in the second stage of the process.
View Article and Find Full Text PDFMolecules
December 2024
School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China.
The 2-(4-hydroxyphenoxy)benzamide scaffold is frequently found in a variety of bioactive compounds, displaying a broad spectrum of properties, such as antibacterial and antitumor effects. In this study, we developed a new method for synthesizing 2-(4-hydroxyphenoxy)benzamide derivatives from 2-aryloxybenzamide via a PhIO-mediated oxidation reaction. The optimal reaction conditions were established as follows: TFA was used as the solvent, PhIO served as the oxidant with a substrate-to-oxidant ratio of 1:2, and the reaction was conducted at room temperature.
View Article and Find Full Text PDFBeilstein J Org Chem
December 2024
LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, NOVA FCT , 2829-516 Caparica, Portugal.
The reactivity of our recently disclosed hypervalent iodine reagents (HIRs) bearing a benzylamine with in situ-generated sulfenate salts was investigated. Under the studied conditions sulfonamides have been obtained in up to 52% yield. This reaction has been extended to a variety of HIRs and sulfenate salts to explore the different reactivity of these new reagents.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
The rapid reaction between lead iodide (PbI) and formamidinium iodide (FAI) complicates the fabrication of high-quality formamidinium lead iodide (FAPbI) films. Conventional methods, such as using nonvolatile small molecular additives to slow the reaction, often result in buried interfacial voids and molecule diffusion, compromising the devices' operational stability. In this study, we introduced a molecular "thruster"-a hypervalent iodine (III) compound with three carbonyl groups and a C-I bond-that possesses coordination and dissociation abilities, enabling programed modulation of perovskite-film growth kinetics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!