Background: The views of people with genetic conditions are crucial to include in public dialogue around developing gene editing technologies. This qualitative study sought to characterize the attitudes of people with inherited retinal conditions (retinitis pigmentosa [RP] and Leber congenital amaurosis [LCA]) toward gene editing.
Methods: Individuals with RP (N = 9) and LCA (N = 8) participated in semi-structured qualitative interviews about their experience with and attitudes toward blindness, and their views about gene editing technology for somatic, germline, and enhancement applications.
Results: Participants saw potential benefits from gene editing in general, but views about its use for retinal conditions varied and were influenced by personal perspectives on blindness. Those who felt more negatively toward blindness, particularly those with later onset blindness, were more supportive of gene editing for retinal conditions. Concerns about both germline and somatic editing included: the importance of informed consent; impacts of gene editing on social attitudes and barriers affecting blind people; and worries about "eliminating" blindness or other traits.
Conclusion: People with RP and LCA have diverse attitudes toward gene editing technology informed by their own lived experience with disability, and many have concerns about how the ways in which it is discussed and implemented might affect them.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6625087 | PMC |
http://dx.doi.org/10.1002/mgg3.803 | DOI Listing |
Plant Cell Physiol
December 2024
RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan.
Soybean (Glycine max) is a leguminous crop cultivated worldwide that accumulates high levels of isoflavones. Although previous research has often focused on increasing the soybean isoflavone content because of the estrogen-like activity of dietary soy in humans, the rapidly increasing demand for soybean as a plant-based meat substitute has raised concerns about excessive isoflavone intake. Therefore, the production of isoflavone-free soybean has been anticipated.
View Article and Find Full Text PDFJ Mater Chem B
January 2025
Department of Chemistry, University of North Dakota, Grand Forks, ND, 58202, USA.
Regulation of gene expression in eukaryotic cells is critical for cell survival, proliferation, and cell fate determination. Misregulation of gene expression can have substantial, negative consequences that result in disease or tissue dysfunction that can be targeted for therapeutic intervention. Several strategies to inhibit gene expression at the level of mRNA transcription and translation have been developed, such as anti-sense inhibition and CRISPR-Cas9 gene editing.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Kansas Alzheimer's Disease Research Center, Fairway, KS, USA.
Background: Recent work suggests that amyloid precursor protein (APP) may be involved in regulating mitochondrial quality control mechanisms. Impaired mitophagy, leading to the accumulation of damaged mitochondria are features of Alzheimer's disease (AD). Conversely, enhancing mitophagy may reduce AD neuropathological change and improve cognitive function.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
UCSF Weill Institute for Neurosciences, San Francisco, CA, USA.
Background: Efforts to genetically reverse C9orf72 pathology have been hampered by our incomplete understanding of the regulation of this complex locus.
Method: We generated five different genomic excisions at the C9orf72 locus in a patient-derived iPSC line and a WT line (11 total isogenic lines), and examined gene expression and pathological hallmarks of C9 FTD/ALS in motor neurons differentiated from these lines. Comparing the excisions in these isogenic series removed the confounding effects of different genomic backgrounds and allowed us to probe the effects of specific genomic changes.
Alzheimers Dement
December 2024
University of California San Diego, La Jolla, CA, USA.
Background: Our lab has developed a CRISPR-based, gene-editing strategy that targets the extreme C-terminus (C-term) of APP (amyloid precursor protein) - a gene with a central and indisputable role in AD. We have reported previously that APP C-terminus CRISPRs effectively attenuate APP β-cleavage and Alzheimer's pathology in vivo. Here, we present new data demonstrating the feasibility and efficacy of a clinically-viable, "all-in-one" therapeutic vector that has all the components needed for APP C-terminus editing (Cas enzyme / gRNAs / regulatory elements) packaged into a single AAV.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!