Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this study, a high fluorescence sensitivity and selectivity, molecularly imprinted nanofluorescent polymer sensor (MIP@SiO @QDs) was prepared using a reverse microemulsion method. 2,4,6-Trichlorophenol (2,4,6-TCP) was detected using fluorescence quenching. Tetraethyl orthosilicate (TEOS), quantum dots (QDs) and 3-aminopropyltriethoxysilane (APTS) were used as cross-linker, signal sources and functional monomer respectively. The sensor (MIP@SiO @QDs) and the non-imprinted polymer sensor (NIP@SiO @QDs) were characterized using infra-red (IR) analysis, X-ray diffraction (XRD), transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The selectivity of MIP@SiO @QDs was examined by comparing 2,4,6-TCP with other similar functional substances including 2,4-dichlorophenol (2,4-DCP), 2,6-dichlorophenol (2,6-DCP) and 4-chlorophenol (4-CP). Results showed that MIP@SiO @QDs had better selectivity for 2,4,6-TCP than the other compounds. Fluorescence quenching efficiency displayed a good linear response at the 2,4,6-TCP concentration range 5-1000 μmol/L. The limit of detection (LOD) was 0.9 μmol/L (3σ, n = 9). This method was equally applicable for testing actual samples with a recovery rate of 98.0-105.8%. The sensor had advantages of simple pretreatment, good sensitivity and selectivity, and wide linear range and could be applied for the rapid detection of 2,4,6-TCP in actual samples.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/bio.3653 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!