Bordetella bronchiseptica, known to infect animals and rarely humans, expresses a lipopolysaccharide that plays an essential role in host interactions, being critical for early clearance of the bacteria. On a B. bronchiseptica 9.73 isolate, mutants defective in the expression of genes involved in the biosynthesis of the core region were previously constructed. Herein, a comparative detailed structural analysis of the expressed lipids A by MALDI-TOF mass spectrometry was performed. The Bb3394 LPS defective in a 2-amino-2-deoxy-D-galacturonic acid lateral residue of the core presented a penta-acylated diglucosamine backbone modified with two glucosamine phosphates, similar to the wild-type lipid A. In contrast, BbLP39, resulting in the interruption of the LPS core oligosaccharide synthesis, presented lipid A species consisting in a diglucosamine backbone N-substituted with C14:0(3-O-C12:0) in C-2 and C14:0(3-O-C14:0) in C-2', O-acylated with C14:0(3-O-C10:0(3-OH) in C-3' and with a pyrophosphate in C-1. Regarding Bb3398 also presenting a rough LPS, the lipid A is formed by a hexa-acylated diglucosamine backbone carrying one pyrophosphate group in C-1 and one phosphate in C-4', both substituted with ethanolamine groups. As far as we know, this is the first description of a phosphoethanolamine modification in B. bronchiseptica lipid A. Our results demonstrate that although gene deletions were not directed to the lipid A moiety, each mutant presented different modifications. MALDI-TOF mass spectrometry was an excellent tool to highlight the structural diversity of the lipid A structures biosynthesized during its transit through the periplasm to the final localization in the outer surface of the outer membrane. Graphical Abstract.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s13361-019-02233-3 | DOI Listing |
Toxins (Basel)
July 2024
Institute of Bioanalysis, Medical School, University of Pécs, Szigeti út 12., H-7624 Pécs, Hungary.
The toxic nature of bacterial endotoxins is affected by the structural details of lipid A, including the variety and position of acyl chains and phosphate group(s) on its diglucosamine backbone. Negative-ion mode tandem mass spectrometry is a primary method for the structure elucidation of lipid A, used independently or in combination with separation techniques. However, it is challenging to accurately characterize constitutional isomers of lipid A extracts by direct mass spectrometry, as the elemental composition and molecular mass of these molecules are identical.
View Article and Find Full Text PDFChemistry
June 2022
Department of Chemistry, University of Natural Resources and Life Sciences, Muthgasse 18, Vienna, 1190, Austria.
TLR4 is a key pattern recognition receptor that can sense pathogen- and danger- associated molecular patterns to activate the downstream signaling pathways which results in the upregulation of transcription factors and expression of interferons and cytokines to mediate protective pro-inflammatory responses involved in immune defense. Bacterial lipid A is the primary TLR4 ligand with very complex, species-specific, and barely predictable structure-activity relationships. Given that therapeutic targeting of TLR4 is an emerging tool for management of a variety of human diseases, the development of novel TLR4 activating biomolecules other than lipid A is of vast importance.
View Article and Find Full Text PDFFront Immunol
September 2021
Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria.
Pro-inflammatory signaling mediated by Toll-like receptor 4 (TLR4)/myeloid differentiation-2 (MD-2) complex plays a crucial role in the instantaneous protection against infectious challenge and largely contributes to recovery from Gram-negative infection. Activation of TLR4 also boosts the adaptive immunity which is implemented in the development of vaccine adjuvants by application of minimally toxic TLR4 activating ligands. The modulation of pro-inflammatory responses via the TLR4 signaling pathway was found beneficial for management of acute and chronic inflammatory disorders including asthma, allergy, arthritis, Alzheimer disease pathology, sepsis, and cancer.
View Article and Find Full Text PDFFront Immunol
June 2021
Research Group Innate Immunity, Research Center Borstel-Leibniz Lung Center, Airway Research Center North (ARCN), German Center for Lung Disease (DZL), Borstel, Germany.
The innate immune response to lipopolysaccharide is essential for host defense against Gram-negative bacteria. In response to bacterial infection, the TLR4/MD-2 complex that is expressed on the surface of macrophages, monocytes, dendritic, and epithelial cells senses picomolar concentrations of endotoxic LPS and triggers the production of various pro-inflammatory mediators. In addition, LPS from extracellular bacteria which is either endocytosed or transfected into the cytosol of host cells or cytosolic LPS produced by intracellular bacteria is recognized by cytosolic proteases caspase-4/11 and hosts guanylate binding proteins that are involved in the assembly and activation of the NLRP3 inflammasome.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2020
Department of Microbial Pathogenesis, University of Maryland, Baltimore, MD 21201;
Immune evasion through membrane remodeling is a hallmark of pathogenesis. remodels its membrane during its life cycle as it alternates between mammalian hosts (37 °C) and ambient (21 °C to 26 °C) temperatures of the arthropod transmission vector or external environment. This shift in growth temperature induces changes in number and length of acyl groups on the lipid A portion of lipopolysaccharide (LPS) for the enteric pathogens () and (), as well as the causative agent of plague, ().
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!