Purpose: Necrotizing enterocolitis (NEC) remains the leading cause of death in preterm infants. Recombinant human soluble thrombomodulin (rTM) has been reported to have anti-inflammatory effects as well as antithrombogenic effects. The aim of this study was to evaluate the effect of rTM in a rat NEC model.
Methods: NEC was induced by enteral feeding with hyperosmolar formula, gavage administration of lipopolysaccharide and asphyxia stress. Controls were fed by their mother ad libitum. In the treatment group, rTM was administered subcutaneously twice (once each on the first and second day). All animals surviving beyond 96 h or that developed signs of distress were euthanized. The ileum was harvested for a histological evaluation and the measurement of the mRNA and protein expression.
Results: The rate of NEC-like intestinal injury in the treatment group (9/25, 36%) was significantly lower than in the NEC group (25/34, 73.5%). Tissue levels of TNF-α, IL-6 and HMGB1 were significantly elevated in the NEC group, whereas those in the treatment group were decreased to similar values as in the control group.
Conclusions: Our experimental study showed that rTM is able to reduce the severity and incidence of NEC. It may be an alternative option for the treatment of NEC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00595-019-01832-7 | DOI Listing |
ACS Appl Bio Mater
January 2025
Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
Burns carry a large surface area, varying in shapes and depths, and an elevated risk of infection. Regardless of the underlying etiology, burns pose significant medical challenges and a high mortality rate. Given the limitations of current therapies, tissue-engineering-based treatments for burns are inevitable.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, South Puzhu Road, Nanjing 211816, China.
Due to the low bioavailability and insolubility of high molecular weight polycyclic aromatic hydrocarbons (HMW-PAHs) in aqueous solutions, their degradation efficiency is significantly limited in wastewater treatment and environmental remediation. To address this challenge, we designed oil-in-water (O/W) macroemulsion (ME) bioreactors with mixed surfactants (Tween-80 and Triton X-100), -butanol, corn oil, and () to enhance the degradation efficiency of pyrene. Owing to the higher solubility of pyrene in MEs, it could be easily adsorbed onto hydrophobic groups on the cell surface.
View Article and Find Full Text PDFACS Biomater Sci Eng
January 2025
The Affiliated Ganzhou Hospital of Nanchang University, Meiguan Avenue No. 16, Ganzhou 341000, China.
Osteoarthritis (OA) is a chronic multifactorial disease characterized by cartilage degeneration, pain, and reduced mobility. Current therapies primarily aim to relieve pain and restore function, but they often have limited effectiveness and side effects. Coixol, a bioactive compound from Coix lacryma-jobi L.
View Article and Find Full Text PDFPract Radiat Oncol
December 2024
Radiation Oncology, Centre Hospitalier de l'Université de Montréal (CHUM), Quebec, Canada.
Purpose: Local recurrence of prostate cancer (PCa) after radiation therapy (RT) typically occurs at the site of dominant tumor burden, and recent evidence confirms that magnetic resonance imaging (MRI) guided tumor dose escalation improves outcomes. With the emergence of prostate-specific membrane antigen (PSMA) positron emission tomography (PET), we hypothesize that PSMA-PET and MRI may not equally depict the region most at risk of recurrence after RT.
Methods And Materials: Patients with intermediate- to high-risk PCa and MRI plus PSMA-PET performed before RT were identified.
Mayo Clin Proc
January 2025
Department of Pharmacy and Therapeutics, Center for Clinical Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!