The balance between photosynthetic organic carbon production and respiration controls atmospheric composition and climate. The majority of organic carbon is respired back to carbon dioxide in the biosphere, but a small fraction escapes remineralization and is preserved over geological timescales. By removing reduced carbon from Earth's surface, this sequestration process promotes atmospheric oxygen accumulation and carbon dioxide removal. Two major mechanisms have been proposed to explain organic carbon preservation: selective preservation of biochemically unreactive compounds and protection resulting from interactions with a mineral matrix. Although both mechanisms can operate across a range of environments and timescales, their global relative importance on 1,000-year to 100,000-year timescales remains uncertain. Here we present a global dataset of the distributions of organic carbon activation energy and corresponding radiocarbon ages in soils, sediments and dissolved organic carbon. We find that activation energy distributions broaden over time in all mineral-containing samples. This result requires increasing bond-strength diversity, consistent with the formation of organo-mineral bonds but inconsistent with selective preservation. Radiocarbon ages further reveal that high-energy, mineral-bound organic carbon persists for millennia relative to low-energy, unbound organic carbon. Our results provide globally coherent evidence for the proposed importance of mineral protection in promoting organic carbon preservation. We suggest that similar studies of bond-strength diversity in ancient sediments may reveal how and why organic carbon preservation-and thus atmospheric composition and climate-has varied over geological time.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41586-019-1280-6 | DOI Listing |
Sci Rep
December 2024
National & Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Sciences, Jilin University, Changchun, Jilin Province, People's Republic of China.
Cold stress, a major abiotic factor, positively modulates the synthesis of artemisinin in Artemisia annua and influences the biosynthesis of other secondary metabolites. To elucidate the changes in the synthesis of secondary metabolites under low-temperature conditions, we conducted dynamic transcriptomic and metabolite quantification analyses of A. annua leaves.
View Article and Find Full Text PDFVegetation restoration can be effective in containing gully head advance. However, the effect of vegetation restoration type on soil aggregate stability and erosion resistance at the head of the gully is unclear. In this study, five types of vegetation restoration-Pinus tabulaeformis (PT), Prunus sibirica (PS), Caragana korshinskii (CKS), Hippophae rhamnoides (HR), and natural grassland (NG, the dominant species is Leymus chinensis)-in the gully head were studied.
View Article and Find Full Text PDFBioresour Technol
December 2024
Bioprocesses Department, Instituto Politécnico Nacional, P.O. Box 07340, Mexico City, Mexico. Electronic address:
A biohydrogen and polyhydroxyalkanoates(PHA)-producing natural photoheterotrophic mixed culture composed mainly by Rhodopseudomonas palustris and Clostridium sp was studied by a proteomic analysis under non-growth conditions (nitrogen-absence and organic acids). Proteins in C. pasteurianum were upregulated, particularly those related to stress response.
View Article and Find Full Text PDFBioresour Technol
December 2024
School of Energy Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China. Electronic address:
Biodegradable plastics (BPs) and lignite, both rich in organic matter, present significant challenges for efficient conversion into clean energy. This study examined the anaerobic co-digestion of BPs and lignite under controlled laboratory conditions. The results demonstrated that the co-digestion of polylactic acid (PLA) and lignite (at a 1:2 mass ratio, with 5 g PLA and 10 g lignite as the model system) rapidly acclimated to the anaerobic environment, enhancing cumulative biogas production by 57 % compared to the mono-digestion of lignite alone.
View Article and Find Full Text PDFJ Environ Manage
December 2024
Department of Water and Wastewater Engineering, School of Urban Construction, Wuhan University of Science and Technology, Wuhan, 430065, China. Electronic address:
The microalgal-bacterial granular sludge (MBGS) process shows potential for carbon-neutral wastewater treatment, yet its application in wastewater treatment plants remains underexplored. This study attempted to use a continuous-flow raceway reactor to treat real municipal wastewater using the MBGS process. The results showed that the removal efficiencies of organics peaked on the fifth day, while declining trends were observed for nitrogen and phosphorus removal.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!