The Us11 protein encoded by herpes simplex virus 1 (HSV-1) functions to impair autophagy; however, the molecular mechanisms of this inhibition remain to be fully established. Here, we report that the Us11 protein targets protein 23 (TRIM23), which is a key regulator of autophagy-mediated antiviral defense mediated by TANK-binding kinase 1 (TBK1). In virus-infected cells, the Us11 protein drastically reduces the formation of autophagosomes mediated by TRIM23 or TBK1. This autophagy-inhibitory effect is attributable to the binding of the Us11 protein to the ARF domain in TRIM23. Furthermore, such interaction spatially excludes TBK1 from the TRIM23 complex that also contains heat shock protein 90 (Hsp90). When stably expressed alone in host cells, the Us11 protein recapitulates the observed phenotypes seen in cells infected with the US11-expressing or wild-type virus. Consistent with this, expression of the Us11 protein promotes HSV-1 growth, while expression of TRIM23 restricts HSV-1 replication in the absence of US11. Together, these results suggest that disruption of the TRIM23-TBK1 complex by the Us11 protein inhibits autophagy-mediated restriction of HSV-1 infection. Autophagy is an evolutionarily conserved process that restricts certain intracellular pathogens, including HSV-1. Although HSV-1 is well known to inhibit autophagy, little is known about the precise molecular mechanisms of autophagy inhibition. We demonstrate that the Us11 protein of HSV-1 spatially disrupts the TRIM23-TBK1 complex, which subsequently suppresses autophagy and autophagy-mediated virus restriction. Thus, expression of the Us11 protein facilitates HSV-1 replication. These data unveil new insight into viral escape from autophagy-mediated host restriction mechanisms.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6694819 | PMC |
http://dx.doi.org/10.1128/JVI.00497-19 | DOI Listing |
Mem Inst Oswaldo Cruz
October 2024
Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Imunofarmacologia, Rio de Janeiro, RJ, Brasil.
Background: Herpesviruses are common co-pathogens in individuals infected with human immunodeficiency virus (HIV). Herpes simplex virus type 1 (HSV1) enhances HIV-1 replication and has evolved mechanisms to evade or disrupt host innate immune responses, including interference with interferon (IFN) signalling pathways.
Objectives: The aimed of this work was evaluated whether it HSV1 affects HIV-1 replication through the modulation of the IFN pathway in human macrophages.
Biochem Biophys Res Commun
November 2024
Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnical University, St. Petersburg, Russia. Electronic address:
The neurodegenerative disorders, such as Alzheimer's disease (AD), Parkinson's disease (PD), Amyotrophic lateral sclerosis (ALS), Huntington's disease (HD) and Spinocerebellar ataxias (SCAs), present an enormous medical, social, financial and scientific problem. Despite intense research into the causes of these disorders, only marginal progress has been made in the clinic and no cures exist for any of them. Most of the scientific effort has been focused on identification of the major causes of these diseases and on developing ways to target them, such as targeting amyloid accumulation for AD or targeting expression of mutant Huntingtin for HD.
View Article and Find Full Text PDFCells
July 2024
Instituto de Microbiología Clínica, Facultad de Medicina, Universidad Austral de Chile, Valdivia 5110566, Chile.
Autophagy engulfs cellular components in double-membrane-bound autophagosomes for clearance and recycling after fusion with lysosomes. Thus, autophagy is a key process for maintaining proteostasis and a powerful cell-intrinsic host defense mechanism, protecting cells against pathogens by targeting them through a specific form of selective autophagy known as xenophagy. In this context, ubiquitination acts as a signal of recognition of the cargoes for autophagic receptors, which direct them towards autophagosomes for subsequent breakdown.
View Article and Find Full Text PDFJ Adv Res
August 2024
School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China. Electronic address:
Introduction: Mitophagy, a selective form of autophagy responsible for maintaining mitochondrial homeostasis, regulates the antiviral immune response and acts as viral replication platforms to facilitate infection with various viruses. However, its precise role in herpes simplex virus 1 (HSV-1) infection and herpes simplex encephalitis (HSE) remains largely unknown.
Objectives: We aimed to investigate the regulation of mitophagy by HSV-1 neurotropic infection and its role in viral encephalitis, and to identify small compounds that regulate mitophagy to affect HSV-1 infection.
Nat Commun
July 2024
Mersana Therapeutics Inc. Cambridge MA, Cambridge, USA.
Activating interferon responses with STING agonists (STINGa) is a current cancer immunotherapy strategy, and therapeutic modalities that enable tumor-targeted delivery via systemic administration could be beneficial. Here we demonstrate that tumor cell-directed STING agonist antibody-drug-conjugates (STINGa ADCs) activate STING in tumor cells and myeloid cells and induce anti-tumor innate immune responses in in vitro, in vivo (in female mice), and ex vivo tumor models. We show that the tumor cell-directed STINGa ADCs are internalized into myeloid cells by Fcγ-receptor-I in a tumor antigen-dependent manner.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!