Background: Altered flow of cerebrospinal fluid (CSF) within the subarachnoid space (SAS) is connected to brain, but also optic nerve degenerative diseases. To overcome the lack of suitable in vitro models that faithfully recapitulate the intricate three-dimensional architecture, complex cellular interactions, and fluid dynamics within the SAS, we have developed a perfusion bioreactor-based 3D in vitro model using primary human meningothelial cells (MECs) to generate meningeal tissue constructs. We ultimately employed this model to evaluate the impact of impaired CSF flow as evidenced during optic nerve compartment syndrome on the transcriptomic landscape of MECs.
Methods: Primary human meningothelial cells (phMECs) were seeded and cultured on collagen scaffolds in a perfusion bioreactor to generate engineered meningeal tissue constructs. Engineered constructs were compared to human SAS and assessed for specific cell-cell interaction markers as well as for extracellular matrix proteins found in human meninges. Using the established model, meningeal tissue constructs were exposed to physiological and pathophysiological flow conditions simulating the impaired CSF flow associated with optic nerve compartment syndrome and RNA sequencing was performed.
Results: Engineered constructs displayed similar microarchitecture compared to human SAS with regards to pore size, geometry as well as interconnectivity. They stained positively for specific cell-cell interaction markers indicative of a functional meningeal tissue, as well as extracellular matrix proteins found in human meninges. Analysis by RNA sequencing revealed altered expression of genes associated with extracellular matrix remodeling, endo-lysosomal processing, and mitochondrial energy metabolism under pathophysiological flow conditions.
Conclusions: Alterations of these biological processes may not only interfere with critical MEC functions impacting CSF and hence optic nerve homeostasis, but may likely alter SAS structure, thereby further impeding cerebrospinal fluid flow. Future studies based on the established 3D model will lead to new insights into the role of MECs in the pathogenesis of optic nerve but also brain degenerative diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6563372 | PMC |
http://dx.doi.org/10.1186/s12987-019-0137-6 | DOI Listing |
Fluids Barriers CNS
January 2025
Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic.
Brain metastases (BMs) are the most common intracranial tumors in adults and occur 3-10 times more frequently than primary brain tumors. Despite intensive multimodal therapies, including resection, radiotherapy, and chemotherapy, BMs are associated with poor prognosis and remain challenging to treat. BMs predominantly originate from primary lung (20-56%), breast (5-20%), and melanoma (7-16%) tumors, although they can arise from other cancer types less frequently.
View Article and Find Full Text PDFBiochemistry
January 2025
George and Anne Ryan Institute for Neuroscience, Department of Biomedical and Pharmacological Sciences, University of Rhode Island, Kingston, Rhode Island 02881, United States.
Cerebral vascular deposition of the amyloid-β (Aβ) peptide, a condition known as cerebral amyloid angiopathy (CAA), is associated with intracerebral hemorrhaging and contributes to disease progression in Alzheimer's disease (AD) and vascular cognitive impairment and dementia (VCID). Familial mutations at positions 22 and 23 within the Aβ peptide lead to early onset and severe CAA pathology. Here, we evaluate the effects of fibrillar Aβ peptides on the viability of primary-cultured human cerebral smooth muscle (HCSM) cells, which are the major site of amyloid deposition in cerebral blood vessel walls.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Diagnostic and Interventional Neuroradiology, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany.
While MRI has become the imaging modality of choice for intracranial meningiomas, no radiologic reporting guidance exists to date that relies on a systematic collection of information relevant to the core medical disciplines involved in the management of these patients. To address this issue, a nationwide expert survey was conducted in Germany. A literature-based catalog of potential reporting elements for MRI examinations of meningioma patients was developed interdisciplinarily.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Center of Nanoscience, Nanotechnology, and Innovation - CeNano2I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, UFMG, Brazil. Electronic address:
B-cell non-Hodgkin lymphoma (NHL) is the most common hematologic malignancy, capable of invading the brain, meninges, and nerve roots of the brain and spine, leading to high lethality. Herein, we designed and developed novel nanostructures for the first time by biofunctionalizing chitosan with two specific antibodies (i.e.
View Article and Find Full Text PDFJ Craniofac Surg
January 2025
Hunan Provincial Key Laboratory of TCM Diagnostics, Institute of TCM Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan, People's Republic of China.
Dural closure is a crucial step in cranial surgery, essential for preventing complications like cerebrospinal fluid leakage, wound infections, and meningitis. Traditional suturing techniques, however, pose challenges such as technical difficulty and the potential for tissue damage. This retrospective study aimed to assess the safety and effectiveness of a nonsuture dural closure method using medical glue for direct adhesion of a patch to the dura mater.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!