The ability to alter distances between atoms is among the most important tools in materials design. Despite this importance, controlling the interlayer distance in stacks of 2D materials remains a challenge. Here we show from first-principles that stacking electrenes-a new class of electron-donating 2D materials-with other 2D materials provides this control. The resulting donor-acceptor heterostructures have interlayer distances 1 Å less than van der Waals layered materials but 1 Å more than covalent or ionic bonds. This yields a class of quasi-bonds that exhibit characteristics of both ordinary chemical bonds and van der Waals interactions. We show how quasi-bonds have tunable polarities and strengths and that these bonds can be understood by drawing on familiar concepts from molecular orbital theory. We also demonstrate several useful properties of 2D donor-acceptor heterostructures, including superlubricity, ultralow work functions, and greatly improved voltages for lithium-ion batteries.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.9b03155DOI Listing

Publication Analysis

Top Keywords

donor-acceptor heterostructures
12
van der
8
der waals
8
bonding donor-acceptor
4
heterostructures ability
4
ability alter
4
alter distances
4
distances atoms
4
atoms tools
4
materials
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!