Background: Metagenomic next-generation sequencing (NGS) of cerebrospinal fluid (CSF) has the potential to identify a broad range of pathogens in a single test.
Methods: In a 1-year, multicenter, prospective study, we investigated the usefulness of metagenomic NGS of CSF for the diagnosis of infectious meningitis and encephalitis in hospitalized patients. All positive tests for pathogens on metagenomic NGS were confirmed by orthogonal laboratory testing. Physician feedback was elicited by teleconferences with a clinical microbial sequencing board and by surveys. Clinical effect was evaluated by retrospective chart review.
Results: We enrolled 204 pediatric and adult patients at eight hospitals. Patients were severely ill: 48.5% had been admitted to the intensive care unit, and the 30-day mortality among all study patients was 11.3%. A total of 58 infections of the nervous system were diagnosed in 57 patients (27.9%). Among these 58 infections, metagenomic NGS identified 13 (22%) that were not identified by clinical testing at the source hospital. Among the remaining 45 infections (78%), metagenomic NGS made concurrent diagnoses in 19. Of the 26 infections not identified by metagenomic NGS, 11 were diagnosed by serologic testing only, 7 were diagnosed from tissue samples other than CSF, and 8 were negative on metagenomic NGS owing to low titers of pathogens in CSF. A total of 8 of 13 diagnoses made solely by metagenomic NGS had a likely clinical effect, with 7 of 13 guiding treatment.
Conclusions: Routine microbiologic testing is often insufficient to detect all neuroinvasive pathogens. In this study, metagenomic NGS of CSF obtained from patients with meningitis or encephalitis improved diagnosis of neurologic infections and provided actionable information in some cases. (Funded by the National Institutes of Health and others; PDAID ClinicalTrials.gov number, NCT02910037.).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6764751 | PMC |
http://dx.doi.org/10.1056/NEJMoa1803396 | DOI Listing |
Microbiome
January 2025
Institute of Dairy Science, MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, China.
Background: The rumen harbors a diverse virome that interacts with other microorganisms, playing pivotal roles in modulating metabolic processes within the rumen environment. However, the characterization of rumen viruses remains incomplete, and their association with production traits, such as feed efficiency (FE), has not been documented. In this study, rumen fluid from 30 Chinese Holstein dairy cows was analyzed using next-generation sequencing (NGS) and High-Fidelity (HiFi) sequencing to elucidate the rumen DNA virome profile and uncover potential viral mechanisms influencing FE.
View Article and Find Full Text PDFFront Parasitol
August 2024
Department of Zoology and Environmental Management, Faculty of Science, University of Kelaniya, Dalugama, Kelaniya, Sri Lanka.
Dirofilariasis, caused by the nematode spp., poses significant challenges in diagnosis due to its diverse clinical manifestations and complex life cycle. This comprehensive literature review focuses on the evolution of diagnostic methodologies, spanning from traditional morphological analyses to modern emerging techniques in the context of dirofilariasis diagnosis.
View Article and Find Full Text PDFBraz J Microbiol
January 2025
Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, SP, 05508-900, Brazil.
Despite meticulous precautions, contamination of genomic DNA samples is not uncommon, which can significantly compromise the analysis of microorganisms' whole-genome sequencing data, thus affecting all subsequent analyses. Thanks to advancements in software and bioinformatics techniques, it is now possible to address this issue and prevent the loss of the entire dataset obtained in a contaminated whole-genome sequencing, where the DNA of another bacterium is present. In this study, it was observed that the sequencing reads from Streptomyces sp.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-719, Olsztyn, Poland.
Studies conducted so far have shown that nano- and microplastic may disturb the intestinal microenvironment by interacting with the intestinal epithelium and the gut microbiota. Depending on the research model used, the effect on the microbiome is different-an increase or decrease in selected taxa resulting in the development of dysbiosis. Dysbiosis may be associated with intestinal inflammation, development of mental disorders or diabetes.
View Article and Find Full Text PDFWater Res
December 2024
Department of Civil and Environmental Engineering, The Grainger College of Engineering, University of Illinois Urbana-Champaign, IL, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, IL, USA; Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, IL, USA.
The spread of antibiotic resistance genes (ARGs) in the environment is a global public health concern. To date, over 5000 genes have been identified to express resistance to antibiotics. ARGs are usually low in abundance for wastewater samples, making them difficult to detect.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!