Disruption of attention is an early and disabling symptom of Alzheimer's disease (AD). The underlying cellular mechanisms are poorly understood and treatment options for patients are limited. These early attention deficits are evident in the TgCRND8 mouse, a well-established murine model of AD that recapitulates several features of the disease. Here, we report severe impairment of the nicotinic receptor-mediated excitation of prefrontal attentional circuitry in TgCRND8 mice relative to wild-type littermate controls. We demonstrate that this impairment can be remedied by apamin, a bee venom neurotoxin peptide that acts as a selective antagonist to the SK family of calcium-sensitive potassium channels. We probe this seeming upregulation of calcium-sensitive inhibition and find that the attenuated nicotinic firing rates in TgCRND8 attention circuits are mediated neither by greater cellular calcium signals nor by elevated SK channel expression. Instead, we find that TgCRND8 mice show enhanced functional coupling of nicotinic calcium signals to inhibition. This SK-mediated inhibition exerts a powerful negative feedback on nicotinic excitation, dampening attention-relevant signaling in the TgCRND8 brain. These mechanistic findings identify a new cellular target involved in the modulation of attention and a novel therapeutic target for early attention deficits in AD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/cercor/bhz107 | DOI Listing |
Int J Surg
January 2025
Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.
Introduction: Lung function has been associated with cognitive decline and dementia, but the extent to which lung function impacts brain structural changes remains unclear. We aimed to investigate the association of lung function with structural macro- and micro-brain changes across mid- and late-life.
Methods: The study included a total of 37 164 neurologic disorder-free participants aged 40-70 years from the UK Biobank, who underwent brain MRI scans 9 years after baseline.
Neurochem Res
January 2025
Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder characterized by cognitive decline. Despite extensive research, therapeutic options remain limited. Varenicline, an αβ nicotinic acetylcholine receptor agonist, shows promise in enhancing cognitive function.
View Article and Find Full Text PDFHum Brain Mapp
February 2025
Department of Neurology, Washington University in St. Louis, St. Louis, Missouri, USA.
Neurodegeneration is presumed to be the pathological process measure most proximal to clinical symptom onset in Alzheimer Disease (AD). Structural MRI is routinely collected in research and clinical trial settings. Several quantitative MRI-based measures of atrophy have been proposed, but their low correspondence with each other has been previously documented.
View Article and Find Full Text PDFAlzheimers Dement
January 2025
Department of Pathology & Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA.
Alzheimers Dement
January 2025
Center for Motor Neuron Biology and Disease, Columbia University Medical Center, New York, New York, USA.
This proceedings article summarizes the inaugural "T Cells in the Brain" symposium held at Columbia University. Experts gathered to explore the role of T cells in neurodegenerative diseases. Key topics included characterization of antigen-specific immune responses, T cell receptor (TCR) repertoire, microbial etiology in Alzheimer's disease (AD), and microglia-T cell crosstalk, with a focus on how T cells affect neuroinflammation and AD biomarkers like amyloid beta and tau.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!