Radiofrequency (RF) coils are an essential part of the magnetic resonance (MR) system. To exploit the inherently higher signal-to-noise ratio at ultrahigh magnetic fields (UHF), research sites were forced to build up expertise in RF coil development, as the number of commercially available RF coils were limited. In addition, an integrated transmit body RF coil, which is well-established at MR systems of lower field strength, is still missing at UHF due to technical and physical constraints. This review article provides a brief recapitulation of RF characteristics and RF coils in general to introduce terminology and RF-related parameters, and will then provide an extensive overview of current state-of-the-art RF coils used for MRI from head to toe at 7 Tesla. Finally, a section on RF safety will briefly discuss challenges in performing a safety assessment for custom-designed RF coils, and issues arising from the interaction of the RF field and potentially implanted medical devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/RMR.0000000000000206 | DOI Listing |
bioRxiv
January 2025
NeuroPoly Lab, Department of Electrical Engineering, Polytechnique Montreal, Montreal.
Purpose: The depth within the body, small diameter, long length, and varying tissue surrounding the spinal cord impose specific considerations when designing radiofrequency coils. The optimal coil configuration for 7 T cervical spinal cord MRI is unknown and, currently, there are very few coil options. The purpose of this work was (1) to establish a quality control protocol for evaluating 7 T cervical spinal cord coils and (2) to use that protocol to evaluate the performance of 4 different coil designs.
View Article and Find Full Text PDFMagn Reson Imaging
January 2025
Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN 37232, USA. Electronic address:
Background: Inductively coupled wireless coils are increasingly used in MRI due to their cost-effectiveness and simplicity, eliminating the need for expensive components like preamplifiers, baluns, coil plugs, and coil ID circuits. Existing tools for predicting component values and electromagnetic (EM) fields are primarily designed for cylindrical volume coils, making them inadequate for irregular volume-type wireless coils.
Purpose: The aim of this study is to introduce and validate a novel magnetic (H-) field probe-based co-simulation method to accurately predict capacitance values and EM fields for irregular volume-type wireless coils, thereby addressing the limitations of current prediction tools.
Med Phys
January 2025
Department of Electrical and Electronics Engineering, Bilkent University, Ankara, Turkey.
Background: Radiofrequency (RF) transmit arrays play a crucial role in various MRI applications, offering enhanced field control and improved imaging capabilities. Designing and optimizing these arrays, particularly in high-field MRI settings, poses challenges related to coupling, resonance, and construction imperfections. Numerical electromagnetic simulation methods effectively aid in the initial design, but discrepancies between simulated and fabricated arrays often necessitate fine-tuning.
View Article and Find Full Text PDFPurpose: Defining a microscopic tumor infiltration boundary is critical to the success of radiation therapy. Currently, radiation oncologists use margins to geometrically expand the visible tumor for radiation treatment planning in soft tissue sarcomas (STS). Image-based models of tumor progression would be critical to personalize the treatment radiation field to the pattern of sarcoma spread.
View Article and Find Full Text PDFQuant Imaging Med Surg
December 2024
Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, USA.
Background: Low-field open magnetic resonance imaging (MRI) systems, typically operating at magnetic field strengths below 1 Tesla, has greatly expanded the accessibility of MRI technology to meet a wide range of patient needs. However, the inherent challenges of low-field MRI, such as limited signal-to-noise ratios and limited availability of dedicated radiofrequency (RF) coils, have prompted the need for innovative coil designs that can improve imaging quality and diagnostic capabilities. In this work, we introduce a multimodal axial array resonator and its implementation in a volume coil, or referred to as a coupled stack-up volume coil, to address these challenges in low-field open MRI.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!