Freshwater unionoid mussels have a unique life cycle involving a temporary parasitic phase. Their larvae (glochidia) attach to the gills or fins of fish hosts where they remain encysted until metamorphosis into free-living juveniles. The physiological response of fish during the critical period of glochidial attachment is not well understood, but recent work suggests that glochidia retention and survival is enhanced in stressed and cortisol-injected hosts. In this study, the early changes induced by glochidiosis were investigated for the first time at the transcriptional level. In 2 separate experiments, juvenile yellow perch Perca flavescens were inoculated with glochidia of Elliptio complanata (a host generalist) and Lampsilis radiata (a host specialist) following a standardized procedure. The transcriptional levels of 5 genes involved in the fish response to stress were assessed in the host liver and gills 24 h post-infection using quantitative real-time PCR. The number of encysted glochidia did not significantly differ between fish inoculated with E. complanata and L. radiata. Both species induced a 3-fold increase of 70 kDa heat-shock protein gene (hsp70) transcription in host liver. However, only E. complanata influenced the transcription of cortisol-regulated genes, notably glucocorticoid receptor DNA-binding factor 1 (grlf1). This gene, known to modulate tissue responsiveness to cortisol, was downregulated in infected fish compared to controls. Our findings suggest that different glochidia species interact with their fish host in distinct ways. Additional studies are required to address this hypothesis and further investigate the significance of the observed host transcriptional responses.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3354/dao03319 | DOI Listing |
J Hepatol
January 2025
Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, EH16 4UU, United Kingdom. Electronic address:
Background & Aims: Hepatocyte transplantation has shown promise for genetic diseases of the hepatocytes but to date has shown limited efficacy for non-genetic forms of severe liver injury. Limited cell engraftment and poor function of donor hepatocytes in recipient livers impacts the clinical utility of hepatocyte cell therapy. The mechanisms underpinning this are poorly understood.
View Article and Find Full Text PDFPLoS Pathog
January 2025
State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Medical School, Wuhan University, Wuhan, China.
Chronic hepatitis B virus (HBV) infection can significantly increase the incidence of cirrhosis and liver cancer, and there is no curative treatment. The persistence of HBV covalently closed circular DNA (cccDNA) is the major obstacle of antiviral treatments. cccDNA is formed through repairing viral partially double-stranded relaxed circular DNA (rcDNA) by varies host factors.
View Article and Find Full Text PDFPLoS One
January 2025
School of Information and Technology, Wenzhou Business College, Wenzhou, Zhejiang, China.
Liver cancer is the sixth most frequent malignancy and the fourth major cause of deaths worldwide. The current treatments are only effective in early stages of cancer. To overcome the therapeutic challenges and exploration of immunotherapeutic options, broad spectral therapeutic vaccines could have significant impact.
View Article and Find Full Text PDFEmerg Microbes Infect
January 2025
Storr Liver Centre, The Westmead Institute for Medical Research, Westmead Hospital and The University of Sydney, Westmead, NSW, Australia.
Hepatitis B virus (HBV) DNA integration into the host cell genome is reportedly a major cause of liver cancer, and a source of hepatitis B surface antigen (HBsAg). High HBsAg levels can alter immune responses which therefore contributes to the progression of HBV-related disease. However, to what extent integration leads to the persistent circulating HBsAg is unclear.
View Article and Find Full Text PDFMol Metab
December 2024
University of Lille, Lille University hospital, 59045 Lille, France; INSERM U1283, CNRS UMR 8199, Institut Pasteur de Lille, 59045 Lille, France; Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, United Kingdom; The Victor Phillip Dahdaleh Institute of Genomic Medicine, McGill University, Montréal, H3A 0G1, Canada. Electronic address:
Metabolic dysfunction-associated steatotic liver disease (MASLD) is characterised by lipid accumulation in the liver and is often associated with obesity and type 2 diabetes. The gut microbiome recently emerged as a significant player of liver metabolism and health through the production of bioactive compounds that are beneficial for its host - "postbiotics". Circulating hippurate, a host-microbial co-metabolite produced by conjugating microbial benzoate with glycine in the host-liver, is associated with human gut microbial gene richness and with metabolic health.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!