Long Noncoding RNA: Genomics and Relevance to Physiology.

Compr Physiol

Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.

Published: June 2019

The mammalian cell expresses thousands of long noncoding RNAs (lncRNAs) that are longer than 200 nucleotides but do not encode any protein. lncRNAs can change the expression of protein-coding genes through both cis and trans mechanisms, including imprinting and other types of transcriptional regulation, and posttranscriptional regulation including serving as molecular sponges. Deep sequencing, coupled with analysis of sequence characteristics, is the primary method used to identify lncRNAs. Physiological roles of specific lncRNAs can be examined using genetic targeting or knockdown with modified oligonucleotides. Identification of nucleic acids or proteins with which an lncRNA interacts is essential for understanding the molecular mechanism underlying its physiological role. lncRNAs have been reported to contribute to the regulation of physiological functions and disease development in several organ systems, including the cardiovascular, renal, muscular, endocrine, digestive, nervous, respiratory, and reproductive systems. The physiological role of the majority of lncRNAs, many of which are species and tissue specific, remains to be determined. © 2019 American Physiological Society. Compr Physiol 9:933-946, 2019.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cphy.c180032DOI Listing

Publication Analysis

Top Keywords

long noncoding
8
physiological role
8
lncrnas
6
physiological
5
noncoding rna
4
rna genomics
4
genomics relevance
4
relevance physiology
4
physiology mammalian
4
mammalian cell
4

Similar Publications

Prostate cancer is the second most common type of cancer in male worldwide. Stromal-epithelial interaction is thought to have a major impact on cancer development and progression. Previous studies have shown that interaction via soluble factors lead to a reduction in the expression of xCT and AL122023.

View Article and Find Full Text PDF

Precise imaging of noncoding RNAs (ncRNAs) in specific organelles allows decoding of their functions at subcellular level but lacks advanced tools. Here we present a DNA-based nanobiotechnology for spatially selective imaging of ncRNA (e.g.

View Article and Find Full Text PDF

Our aim was to evaluate the regulation of messenger RNAs (mRNAs) and biological pathways by long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) in ischemic stroke. We employed weighted gene co-expression network analysis (WGCNA) to construct two co-expression networks for mRNAs with circRNAs and lncRNAs, respectively, to investigate their association with ischemic stroke. We compared the overlap of mRNAs and biological pathways in the stroke-associated modules of the two networks.

View Article and Find Full Text PDF

Non-small cell lung cancer (NSCLC) has emerged as one of the most prevalent malignancies worldwide. N6-methyladenosine (mA) methylation, a pervasive epigenetic modification in long noncoding RNAs (lncRNAs), plays a crucial role in NSCLC progression. Here, we report that mA modification and the expression of the lncRNA stem cell inhibitory RNA transcript (SCIRT) was significantly upregulated in NSCLC tissues and cells.

View Article and Find Full Text PDF

Identification and Validation of a m6A-Related Long Noncoding RNA Prognostic Model in Colorectal Cancer.

J Cell Mol Med

January 2025

Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China.

Accumulating research indicates that N6-methyladenosine (m6A) modification plays a pivotal role in colorectal cancer (CRC). Hence, investigating the m6A-related long noncoding RNAs (lncRNAs) significantly improves therapeutic strategies and prognostic assessments. This study aimed to develop and validate a prognostic model based on m6A-related lncRNAs to improve the prediction of clinical outcomes and identify potential immunological mechanisms in CRC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!