FeCl-Promoted ring size-dictating diversity-oriented synthesis (DOS) of N-heterocycles using in situ-generated cyclic imines and enamines.

Chem Commun (Camb)

Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, No. 100, Shiquan 1st Rd, Sanmin District, Kaohsiung City 807, Taiwan. and Department of Medical Research, Kaohsiung Medical University Hospital, No. 100 Tzyou 1st Rd, Sanmin District, Kaohsiung City 807, Taiwan.

Published: July 2019

The FeCl-promoted ring size-controlled oxidative activation of o-alkynylanilines opens up a complementary appealing protocol for poly-N-heterocycle synthesis. When electron-poor π-alkyne iron species combine with cyclic enamines obtained from cyclohexanone and β-tetralone, they undergo a regioselective 6-exo-dig cyclization to afford the corresponding dibenzo[b,j][1,10]phenanthrolines and 12-benzoylated dihydrobenzo[a]acridine skeletons. Later, these acridine motifs become completely unsaturated due to dehydrogenative aromatization via the aza-allyl oxidation intermediate. We obtained all quaternary carbon centre pseudoindoxyls through the Mannich-type alkylation of 2,3-dihydro-1H-inden-1-one with cyclic ketimines generated from the in situ intramolecular nucleophilic cyclization of o-alkynylanilines.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9cc03375kDOI Listing

Publication Analysis

Top Keywords

fecl-promoted ring
8
ring size-dictating
4
size-dictating diversity-oriented
4
diversity-oriented synthesis
4
synthesis dos
4
dos n-heterocycles
4
n-heterocycles situ-generated
4
situ-generated cyclic
4
cyclic imines
4
imines enamines
4

Similar Publications

Targeted protein degradation (TPD) offers a promising approach for chemical probe and drug discovery that uses small molecules or biologics to direct proteins to the cellular machinery for destruction. Among the >600 human E3 ligases, CRBN and VHL have served as workhorses for ubiquitin-proteasome system-dependent TPD. Identification of additional E3 ligases capable of supporting TPD would unlock the full potential of this mechanism for both research and pharmaceutical applications.

View Article and Find Full Text PDF

Urban pandemic governance personal protective equipment allocation strategies: a system dynamics simulation.

Sci Rep

January 2025

Institute for Disaster Management and Reconstruction, Sichuan University, No. 122, Section 1, Huanghe Middle Road, Chengdu, 610211, China.

In the early days of the urban pandemic, many cities had personal protective equipment (PPE) shortages, which adversely affected urban pandemic governance. Using the COVID-19 strategies employed in Wuhan as the pivotal case study, this study sought to determine effective strategies to optimize city PPE distribution. System dynamics modeling was employed to explore the influence of PPE allocation strategies on pandemic control measures.

View Article and Find Full Text PDF

Flow chemistry-enabled asymmetric synthesis of cyproterone acetate in a chemo-biocatalytic approach.

Nat Commun

January 2025

Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai, 200433, China.

Flow chemistry has many advantages over batch synthesis of organic small-molecules in terms of environmental compatibility, safety and synthetic efficiency when scale-up is considered. Herein, we report the 10-step chemo-biocatalytic continuous flow asymmetric synthesis of cyproterone acetate (4) in which 10 transformations are combined into a telescoped flow linear sequence from commercially available 4-androstene-3, 17-dione (11). This integrated one-flow synthesis features an engineered 3-ketosteroid-Δ-dehydrogenase (ReM2)-catalyzed Δ-dehydrogenation to form the C1, C2-double bond of A ring, a substrate-controlled Co-catalyzed Mukaiyama hydration of 9 to forge the crucial chiral C17α-OH group of D ring with excellent stereoselectivity, and a rapid flow Corey-Chaykovsky cyclopropanation of 7 to build the cyclopropyl core of A ring.

View Article and Find Full Text PDF

The History of Studies on Oxetane Ring Formation in Paclitaxel Biosynthesis.

Chembiochem

January 2025

Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Department of Biosynthesis of Natural Products, 1# Xian Nong Tan Street, 100050, Beijing, CHINA.

There is no doubt that breakthroughs in the enzyme-mediated formation of the oxetane ring in paclitaxel biosynthesis constitute significant milestones in the biosynthesis of complex natural products. In this review, we summarize the understanding of the biosynthesis of the oxetane ring of paclitaxel from different viewpoints. Generally, it covers five aspects, (1) a different understanding of the mechanistic formation of the oxetane ring on the basis of sound chemical reasoning, (2) a reasonable speculation of the biosynthetic pathways and suitable surrogate substrates for oxetane ring formation based on the natural and chemical logical analysis, (3) Taxus genome-enabled enzymes identification, (4) the discovery of different enzymes that mediate oxetane ring formation, and (5) a mechanistic investigation involving the use of isotopic labelling experiments and quantum chemical calculations.

View Article and Find Full Text PDF

Frame configuration for the management of complex tibial fractures is highly variable and is dependent upon both fracture pattern and surgeon preference. The optimal number of rings to use when designing a frame remains uncertain. Traditionally larger, multi-ring-per-segment constructs have been assumed to offer optimal stability and therefore favourable conditions for fracture healing but there is little in-vivo evidence for this and the recent concept of reverse dynamisation challenges this approach.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!