Background: Lack of effective early-stage HIV-1 inhibitor instigated the need for screening of novel gp120-CD4 binding inhibitor. Polyphenols, a secondary metabolite derived from natural sources are reported to have broad spectrum HIV-1 inhibitory activity. However, the gp120-CD4 binding inhibitory activity of polyphenols has not been analysed in silico yet.

Objectives: To establish the usage of phytopolyphenols (Theaflavin, Epigallocatechin (EGCG), Ellagic acid and Gallic acid) as early stage HIV-1 inhibitor by investigating their binding mode in reported homology of gp120-CD4 receptor complex using in silico screening studies and in vitro cell line studies.

Methods: The in silico molecular docking and molecular simulation studies were performed using Schrödinger 2013-2 suite installed on Fujitsu Celsius Workstation. The in vitro cell line studies were performed in the TZM-bl cell line using MTT assay and β-galactosidase assay.

Results: The results of molecular docking indicated that Theaflavin and EGCG exhibited high XP dock score with binding pose exhibiting Van der Waals interaction and hydrophobic interaction at the deeper site in the Phe43 cavity with Asp368 and Trp427. Both Theaflavin and EGCG form a stable complex with the prepared HIV-1 receptor and their binding mode interaction is within the vicinity 4 Å. Further, in vitro cell line studies also confirmed that Theaflavin (SI = 252) and EGCG (SI = 138) exert better HIV-1 inhibitory activity as compared to Ellagic acid (SI = 30) and Gallic acid (SI = 34).

Conclusion: The results elucidate a possible binding mode of phytopolyphenols, which pinpoints their plausible mechanism and directs their usage as early stage HIV-1 inhibitor.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1570162X17666190611121627DOI Listing

Publication Analysis

Top Keywords

vitro cell
16
gp120-cd4 binding
12
cell studies
12
hiv-1 inhibitor
12
inhibitory activity
12
binding mode
12
binding inhibitory
8
silico molecular
8
hiv-1 inhibitory
8
ellagic acid
8

Similar Publications

Background/aims: Human mesenchymal stromal cells (hMSC) are multipotent adult cells commonly used in regenerative medicine as advanced therapy medicinal products. The expansion of these cells in xeno-free supplements is highly encouraged by regulatory agencies due to safety concerns. However, the number of supplements with robust performance and consistency for hMSC expansion are limited.

View Article and Find Full Text PDF

Chimeric Antigen Receptor (CAR) T cell therapy has revolutionized cancer treatment and is now being explored for other diseases, such as autoimmune disorders. While the tumor microenvironment (TME) in cancer is often immunosuppressive, in autoimmune diseases, the environment is typically inflammatory. Both environments can negatively impact CAR T cell survival: the former through direct suppression, hypoxia, and nutrient deprivation, and the latter through chronic T cell receptor (TCR) engagement, risking exhaustion.

View Article and Find Full Text PDF

Neovascular age-related macular degeneration and diabetic macular edema are leading causes of vision-loss evoked by retinal neovascularization and vascular leakage. The glycoprotein microfibrillar-associated protein 4 (MFAP4) is an integrin αβ ligand present in the extracellular matrix. Single-cell transcriptomics reveal MFAP4 expression in cell-types in close proximity to vascular endothelial cells including choroidal vascular mural cells and retinal astrocytes and Müller cells.

View Article and Find Full Text PDF

Purpose: Prior sperm DNA fragmentation index (DFI) thresholds for diagnosing male infertility and predicting assisted reproduction technology (ART) outcomes fluctuated between 15 and 30%, with no agreed standard. This study aimed to evaluate the impact of the sperm DFI on early embryonic development during ART treatments and establish appropriate DFI cut-off values.

Methods: Retrospectively analyzed 913 couple's ART cycles from 2021 to 2022, encompassing 1,476 IVF and 295 ICSI cycles, following strict criteria.

View Article and Find Full Text PDF

Background: Ovarian cancer (OC), particularly high-grade serous ovarian carcinoma (HGSOC), is the leading cause of mortality from gynecological malignancies worldwide. Despite the initial effectiveness of treatment, acquired resistance to poly(ADP-ribose) polymerase inhibitors (PARPis) represents a major challenge for the clinical management of HGSOC, highlighting the necessity for the development of novel therapeutic strategies. This study investigated the role of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), a pivotal regulator of glycolysis, in PARPi resistance and explored its potential as a therapeutic target to overcome PARPi resistance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!