Expression of programmed cell death ligand 1 (PD-L1) within tumors is an important biomarker for guiding immune checkpoint therapies; however, immunohistochemistry-based methods of detection fail to provide a comprehensive picture of PD-L1 levels in an entire patient. To facilitate quantification of PD-L1 in the whole body, we developed a peptide-based, high-affinity PD-L1 imaging agent labeled with [F]fluoride for positron emission tomography (PET) imaging. The parent peptide, WL12, and the nonradioactive analog of the radiotracer, FPy-WL12, inhibit PD-1/PD-L1 interaction at low nanomolar concentrations (half maximal inhibitory concentration [IC], 26-32 nM). The radiotracer, [F]FPy-WL12, was prepared by conjugating 2,3,5,6-tetrafluorophenyl 6-[F]fluoronicotinate ([F]FPy-TFP) to WL12 and assessed for specificity in vitro in 6 cancer cell lines with varying PD-L1 expression. The uptake of the radiotracer reflected the PD-L1 expression assessed by flow cytometry. Next, we performed the in vivo evaluation of [F]FPy-WL12 in mice bearing cancer xenografts by PET imaging, ex vivo biodistribution, and blocking studies. In vivo data demonstrated a PD-L1-specific uptake of [F]FPy-WL12 in tumors that is reduced in mice receiving a blocking dose. The majority of [F]FPy-WL12 radioactivity was localized in the tumors, liver, and kidneys indicating the need for optimization of the labeling strategy to improve the in vivo pharmacokinetics of the radiotracer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6563393 | PMC |
http://dx.doi.org/10.1177/1536012119852189 | DOI Listing |
Pharmaceutics
December 2024
Department of Urology and Department of Nuclear Medicine, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China.
Background/objectives: The purpose of this study was to develop the gemcitabine-loaded drug-eluting beads (G-DEBs) for transarterial chemoembolization (TACE) in rabbit renal tumors and to evaluate their antitumor effect using 2-deoxy-2-[(18)F]fluoro-D-glucose positron emission tomography/X-ray computed tomography (F-FDG PET/CT).
Methods: DEBs were prepared by polyvinyl alcohol-based macromer crosslinked with -acryl tyrosine and ,'-methylenebis(acrylamide). Gemcitabine was loaded through ion change to obtain G-DEBs.
Pharmaceuticals (Basel)
December 2024
Department of Endocrinology and Radioisotope Therapy, Military Institute of Medicine-National Research Institute, 04-141 Warsaw, Poland.
Renal cell carcinoma is one of the most aggressive urogenital malignancies, with an increasing number of cases worldwide. The majority of cases are diagnosed at an advanced stage, as this form of growth is typically silent. An accurate evaluation of the extent of the disease is crucial for selecting the most appropriate treatment approach.
View Article and Find Full Text PDFPharmaceuticals (Basel)
December 2024
Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA.
Bromodomain and extra-terminal (BET) proteins are critical regulators of gene transcription, as they recognize acetylated lysine residues. The BD1 bromodomain of BRD4, a member of the BET family, has emerged as a promising therapeutic target for various diseases. This study aimed to develop and evaluate a novel C-11 labeled PET radiotracer, [C]YL10, for imaging the BD1 bromodomain of BRD4 in vivo.
View Article and Find Full Text PDFPharmaceuticals (Basel)
December 2024
Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Li-Nong St., Beitou Dist., Taipei City 112, Taiwan.
The tumor microenvironment (TME) is a critical factor in cancer progression, driving tumor growth, immune evasion, therapeutic resistance, and metastasis. Understanding the dynamic interactions within the TME is essential for advancing cancer management. Molecular imaging provides a non-invasive, real-time, and longitudinal approach to studying the TME, with techniques such as positron emission tomography (PET), magnetic resonance imaging (MRI), and fluorescence imaging offering complementary strengths, including high sensitivity, spatial resolution, and intraoperative precision.
View Article and Find Full Text PDFPharmaceuticals (Basel)
December 2024
Life Molecular Imaging GmbH, Tegeler Str. 7, 13353 Berlin, Germany.
Florbetaben (FBB) is a radiopharmaceutical approved by the FDA and EMA in 2014 for the positron emission tomography (PET) imaging of brain amyloid deposition in patients with cognitive impairment who are being evaluated for Alzheimer's disease (AD) or other causes of cognitive decline. Initially, the clinical adoption of FBB PET faced significant barriers, including reimbursement challenges and uncertainties regarding its integration into diagnostic clinical practice. This review examines the progress made in overcoming these obstacles and describes the concurrent evolution of the diagnostic landscape.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!