AI Article Synopsis

Article Abstract

An efficient genetic transformation system is a prerequisite for studying gene functions, molecular breeding program, and introducing new traits. mediated genetic transformation is a widely preferred and accepted method for many plants, including pigeon pea. However, the efficiency of transformation of pigeon pea using the existing protocols is low and time-consuming. In the present study, we developed a rapid and highly efficient transformation system of pigeon pea, using embryonic axis-attached cotyledons as explants. We systematically investigated the influence of varying optical densities of suspension, duration of incubation, and co-cultivation on the transformation efficiency. In our system, a transformation efficiency of approximately 83% was achieved using cells at an optical density (OD) of 0.25, infection time of 15 min, and co-culturing with explants for 72 h in the light with 100µM acetosyringone. The entire procedure, starting from seed to establishment of transformed plants in soil, was achieved in 35-40 days. This is a rapid and highly efficient protocol for -mediated transformation of pigeon pea, which could potentially be a useful reference, not only for the genetic improvement of pigeon pea but also for other recalcitrant leguminous plants.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6615537PMC
http://dx.doi.org/10.1080/21645698.2019.1625653DOI Listing

Publication Analysis

Top Keywords

pigeon pea
24
rapid highly
12
highly efficient
12
transformation system
12
transformation
8
-mediated transformation
8
system pigeon
8
genetic transformation
8
transformation pigeon
8
transformation efficiency
8

Similar Publications

This study aimed to compare the conventional soybean ( L.) cultivation method with integrated systems in an Latossolo Vermelho Acriférrico típico and how these systems affect soil cover biomass production, initial nutrient concentration in plant residues, soil respiration and microclimate, as well as soybean growth, physiology and productivity. A comparative analysis of microclimate and soil respiration, plant physiology, and growth was conducted between a conventional soybean monoculture (soybean grown without plant residues on the soil from the previous crop) and soybean grown in soil containing maize residues.

View Article and Find Full Text PDF
Article Synopsis
  • Pigeon pea is a valuable legume grown in tropical and subtropical regions, known for its high protein content and medicinal properties, which support low-income farmers economically.
  • The study assessed how different pigeon pea genotypes respond to drought conditions, finding significant variations in their physiological and biochemical traits, particularly in fresh and dry weight under stress.
  • Analysis using SCoT genetic markers revealed substantial genetic diversity among the eight pigeon pea genotypes, indicating their potential for breeding programs focused on drought tolerance.
View Article and Find Full Text PDF

Pigeon pea ( (L.) Millsp.) is a traditional Chinese medicinal plant widely utilized in folk medicine due to its significant pharmacological and nutritional properties.

View Article and Find Full Text PDF

Microbes such as bacteria and fungi play important roles in nutrient cycling in soils, often leading to the bioavailability of metabolically important mineral elements such as nitrogen (N), phosphorus (P), iron (Fe), and zinc (Zn). Examples of microbes with beneficial traits for plant growth promotion include mycorrhizal fungi, associative diazotrophs, and the N-fixing rhizobia belonging to the α, β and γ class of Proteobacteria. Mycorrhizal fungi generally contribute to increasing the surface area of soil-root interface for optimum nutrient uptake by plants.

View Article and Find Full Text PDF

The importance for multi-dimensional priority-setting of agricultural innovations is growing, given that agricultural technologies usually play multiple roles for smallholder farmers. This study assesses agricultural technologies based on their multi-dimensional impacts in the drylands of sub-Saharan Africa and South Asia. The study applies the Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) to a set of promising agricultural technologies and uses three outcome criteria: the benefit-cost ratio, poverty reduction, and nutrition security.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!